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Neuropsychology of artificial intelligence focuses on synthetic neural cog-
nition as a new type of study object within cognitive psychology. With
the goal of making artificial neural networks of language models more
explainable, this approach involves transposing concepts from cognitive
psychology to the interpretive construction of artificial neural cognition.
The human cognitive concept involved here is categorization, serving as a
heuristic for thinking about the process of segmentation and construction
of reality carried out by the neural vectors of synthetic cognition.

1 Introduction
Explainability aims to make the activity of an artificial neural network under-
standable to humans (Du et al., 2019 ; Pichat, 2023, 2024a). This involves
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translating the observable behavior of a neural network into an interpretative
framework, allowing for the assignment of relevant meaning to this behavior
according to the observer’s goals. In our context, this framework is that of
cognitive psychology. Therefore, it involves using the categories of human cogni-
tive thought as conceptual referents to establish analogies between human and
artificial cognitive behaviors. More specifically, we will focus on the notion of
categorization, as this concept from cognitive psychology appears particularly
relevant for analyzing the synthetic cognition of language models, which largely
involves a dynamic extraction of linguistic categorical invariants (Jawahar et al.,
2019; Clark et al., 2019; Bills et al., 2023; Clark et al., 2023).

In this work, we focus on an epistemological explainability with fine cognitive
granularity (Pichat, 2024b). In other words, we examine a microscopic explain-
ability where the unit of observation is the formal neuron. This low-granularity
explanatory approach aims to directly penetrate the "black box" system that
an artificial neural network represents by creating elements of understanding
about how thought categories and concepts are encoded and structured locally
within a language model (Dalvi et al., 2019, 2022). The objective is, therefore,
to interpret how categorical knowledge is constructed and utilized by the funda-
mental elements of the networks, namely the formal neurons themselves (Fan et
al., 2023).

2 Human Categorization

2.1 The Cognitive Process of Human Categorization
Categorization plays a central role in a variety of human cognitive activities
of different scales (Sternberg, 2007; Roads et al., 2024): classification and
sequencing, identification and denotation of objects, comprehension, reasoning,
problem-solving, memorization, inference and prediction, property transfer,
conceptualization, etc.

From a formal perspective, a category is defined by two types of elements:
its comprehension and its extension (Nadeau, 1999). The comprehension of
a category, also called intension, is the set of properties that necessarily and
sufficiently define this category, whether these properties are physical, structural,
functional, procedural, or goal-oriented (i.e., related to the purpose of the
involved task) (Tijus, 2004). Its extension is the set of members belonging to
this category.

Historically, the classical notion of a category was shaped by Plato and then
Aristotle, who positioned a category as being defined by a series of necessary
and sufficient properties. This perspective gave rise, for example, to trait-based
categories, conceived as the result of breaking down a category into a series of
characteristics, all of which are necessary and collectively sufficient to define that
category (Katz, 1972). However, cognitive studies of the actual human processes
of categorization quickly revealed the rigidity of this foundational conception of
the rules or theoretical defining elements of categorization.
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Rosch (1975) developed an approach to categorization by assigning a level
of similarity between a candidate object and the prototype of the involved
class. This approach is based on the empirical observation that individuals,
when asked what defines a category, tend to mention characteristic traits rather
than determinative properties (Rosch and Mervis, 1975). The prototype is then
defined as the most representative, most typical example of the category, whether
it is real or extrapolated through mental construction (such as averaging), in
relation to its characteristic traits (Singh et al., 2020; Vogel et al., 2021). This
prototype can vary greatly for different subcategories within a given category
(Malt and Smith, 1984). In the prototype approach, characteristic traits are
frequently present in the items that make up the class, but this is not always the
case. Indeed, this approach to categorization, which is more flexible than the
previous definition-based conception, addresses Wittgenstein’s (1953) "family
resemblance" objection: if the prototype is characterized by properties (1, 2, 3,
4), an element A possessing attributes (1, 2, 5, 6) and an element B possessing
attributes (7, 8, 3, 4) can both be assigned to the same category even if they do
not share any common attributes. This prototype approach is also found in the
field of princeps perception theories (Posner et al., 1967; Bransford, 1971; Reed,
1972).

Related but different from the prototype approach is the exemplar theory of
categorization (Medin and Schaffer, 1978; Nosofsky, 1992; Nosofsky et al., 2022),
which suggests that objects are categorized by comparison to typical examples
of the category, examples stored in memory. The most typical exemplar is the
one that most closely resembles all the known exemplars by the individual. This
exemplar exerts the strongest attraction power due to its frequency of occurrence
among the exemplars retained at the memory level.

Let us briefly note, even though we will not explore it further, the definition
of categorization by semantic networks (Collins and Quillian, 1969; Hornsby
et al., 2020). In this conception, categories are structured within a network of
nodes (concepts) and links between these nodes (relationships between concepts),
ranging from the most specific categories to those with the highest level of
generality.

Finally, let us mention the contextual, circumstantial, or goal-oriented ap-
proach to categorization, similar to ad hoc categories (Barsalou, 1983; Glaser
et al., 2020). In the context of these functional approaches (Rips, 1989; Keil,
1989; Wisniewski and Medin, 1994; Barsalou, 1995; Bove et al., 2022), the goal
becomes the central element in defining a category, rather than general logic,
semantics, or appearance. Here, it is the situation, through its end goal and
specific context elements, that guides the categorization, and the terms of this
categorization have no existence outside of this situation, hic et nunc.

2.2 Human Categorization by Similarity Judgment
Similarity-based categorization approaches assume that an object is assimilated
to a class based on its estimated proximity to what represents the class (Thibault,
1997; Jacob et al., 2021; Kaniuth et al., 2022; Roads et al., 2021, 2024). This is
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based on (i) a space of traits or dimensions deemed relevant for comparison and
(ii) a mode of calculating the distance between compared instances.

The involvement of similarity judgment as a basis for categorization seems
broad-spectrum (Thibault, 1997), especially for classes without explicit defini-
tions and with hierarchical organization, making it possible for some items to
clearly belong to a category (Hampton, 1997).

The theories of categorization by prototype (Posner and Keele, 1968; Reed,
1972; Rosch & Mervis, 1975; Medin and Schaffer, 1978) mentioned previously,
in fact, highlight the role of similarity in the categorization process (Sanborn
et al., 2021): an item is assigned to a category if it is judged to be close to
the central representation, which is the prototype. The same applies to the
exemplar-based approach to categorization (Medin and Schaffer, 1978; Brooks,
1987; Nosofsky, 1992): an item is assigned to a categorical class if it is estimated
to be closest to the significant elements that make up that class. In both cases,
categorization results from the estimated distance between the item in question
and what represents the category (Ayeldeen et al., 2015; Roads et al., 2024).

2.3 Arguments Against Human Categorization by
Similarity

Arguments against the effective or possible foundation of categorization on
similarity reasoning are diverse (Love, 2002):

• An element is assigned to the category that best explains it (Murphy
and Medin, 1985), beyond possible initial classification by similarity (Keil,
1989).

• Categories with explicit definitions cannot be directly based on similarity
judgment (Kalyan et al., 2012).

However, the main arguments are based on the idea that the singular choice
of similarity judgment criteria, which are just one possibility among others in the
space of traits or dimensions, does not necessarily align with what constitutes or
should constitute categorical assignment (Reppa et al., 2013; Poth, 2023):

• Categorization is influenced by information external to the objects being
classified: general theories about the world or elements specifically related
to the category involved (Rips, 1989).

• The assignment of an object to a category is also a function of the rela-
tionships between the other objects that make up that category (Medin et
al., 1993).

• In cases where categorization is determined by the purpose of tasks, par-
ticularly in the case of ad hoc categories (Barsalou, 1991), similarity will
invoke comparison criteria that are not suited to this finalized activity.
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These arguments converge on the idea that reasoning based on similarity is too
ambiguous to functionally underpin categorical assignment (Wixted, 2018). Rips
(1989) mentions in this regard a non-monotonic relationship between similarity
and category membership. The criterion used for a similarity judgment indeed
varies depending on the context (Murphy and Medin, 1985), for example, cultural
contexts (Whorf, 1941). In other words, the criteria used for similarity judgment
are not sufficiently constrained and are therefore too dependent on the singular
choice of segmentation made hic et nunc (Goodman, 1972).

Thus, it follows that similarity judgments and category membership are not
in alignment (Rips, 1989; Medin, 1993) and that similarity cannot, or should
not, imply categorization.

2.4 Counterarguments in Favor of Human Categorization
Based on Similarity

In response to arguments against the involvement or relevance of similarity in
the categorization process, several responses have been provided (Bobadilla et
al., 2020; Hebart et al., 2020).

Goldstone (1994) offers the following fourfold counter-argument: (i) The
argument that similarity is too unstable to serve as a basis for categorization
does not hold because it presupposes that categorization itself would not also be
flexible; (ii) Even if superficial in some cases, similarity is functional in that it can
genetically facilitate the discovery of "deeper" indicators of categorization and
thereby the creation of new, more "fundamental" categories; (iii) Experiments
show that similarity is not as unstable as is often argued; (iv) Categories that
are not based on similarity are resistant to generalization.

Thibault (1997), in response to criticisms about the subjective relativity of
similarity, posits that categorization is actually a sub-type of similarity. The
author acknowledges that while similarity is indeed contingent upon the choice
of comparison criteria, categorization operates similarly, except that it selects its
own criteria from a set of traits defining the relevant category. Criticizing psycho-
logical essentialism, Thibault (idem) also asserts that the argument regarding the
weakness of similarity (in the face of contextual elements, for example) does not
hold, as this position assumes that the criteria for categorical segmentation have,
could have, or should have an intrinsic, ontological per se value, independent of
the individual.

Finally, Hampton (1997) argues that categorization itself can be affected by
irrelevant similarity elements (often perceptual and notably visual), or at least
those deemed irrelevant by a priori logical analysis that dogmatically asserts that
thought should operate in accordance with the standards of what is instantiated
as logic. Moreover, the author shows, based on a fuzzy logic approach, that
while subjects sometimes find it difficult to define categories, they nevertheless
have no difficulty indicating the extent to which two items from these categories
differ or identifying typical members, i.e., engaging in cognitive activities of
similarity regarding them. In both cases, once again, Hampton emphasizes that
the cognitive weaknesses attributed to similarity are based on an erroneous
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assumption of the subordination of categorization to what is normatively and a
priori instantiated as the (classical) Logic.

An invariant emerges from these counter-arguments: asserting the limits of
similarity as a basis for categorization involves a dual epistemological flaw: (i) A
realist flaw, which involves artificially decreeing categorization as a process that
engages with or must engage with a reality that is ontologically predefined; (ii)
A rationalist flaw, which assigns to categorization a (duty of) subordination to a
logic invoked as being self-evident, a self-evidence that every individual should
also be able to grasp.

3 Problem Statement

3.1 Context
Numerous studies reveal or infer a diversity of categories (linguistic, logical, po-
sitional, etc.) encoded in neurons and attention heads. In the classic experiment
by Clark et al. (2019) on BERT, the authors highlight the converging linguistic
functions of attention heads from the same layers. In their fascinating study
on GPT-2XL, Bills et al. (2023) identify a series of specific neurons, noting
that some are highly sensitive to context. Research also shows a geographic
distribution of the type of categorial neural activity according to layer depth.
Thus, the early layers respond more to morphological categories at the word level,
while the deeper layers are more sensitive to the syntactic categorical features of
sentences (such as passive/active voice, tense) and semantic categories (Jawahar
et al., 2019).

In the context of our present work, we build on certain aspects of the study
conducted by Bills et al. (2023), redirecting them toward other, more cognitive
and epistemological issues (Pichat, 2024), as we will specify in the following
section. Before that, let us briefly explain the approach of Bills et al. (idem).
Based on the hypothesis that a neuron activates specifically for a given property,
the researchers undertook a comprehensive analysis of the categorical semantics
of all the neurons in GPT-2XL. Methodologically, they subjected GPT-2XL to
an extensive series of token sequences, randomly selected from the internet data
used to train the model. For each token, the activation values of all neurons
across all layers were recorded. GPT-4 was then used to automatically identify
the elements to which each neuron reacts (i.e., to generate the "categorical
explanation") based on an instructional and example prompt applied only to the
five sequences with the highest activations.

3.2 From Human to Synthetic Categorization
In line with the question we have presented in the field of human cognition
regarding the relationship between categorization and similarity, our transposition
of this heuristic question into the field of synthetic cognition is as follows: Is
the level of categorical membership of tokens (arriving at a given neuron in
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the form of embeddings) to the category associated with that neuron related
to their level of similarity? In other words, are the intensity of categorical
membership and the intensity of similarity of tokens, as analyzed by a given
neuron, two related aspects of the same phenomenon? Put differently, is the
neural space of categorical membership segmented according to the segmentation
of the similarity space? This is a largely unexplored issue in the field of synthetic
explainability (Fan et al., 2023; Luo et al., 2024; Zhao et al., 2024), and it seems
particularly pertinent to investigate.

From an epistemological perspective, we have transposed the notion of
categorical membership (measured on a dichotomous nominal scale, yes/no) in
the realm of human cognition to the notion of the level of categorical membership
(thus measured on an ordinal scale) in the realm of synthetic cognition; this is
because, in the artificial neural field, categorical membership (i.e., activation, as
we will elaborate later) is a numerical value rather than a boolean one.

4 Methodology

4.1 Choice of GPT-2XL
In our study, we focused on OpenAI’s GPT models because this suite of models,
which inaugurated a significant part of contemporary generative AI, presents the
paradox of being both the most popular in terms of media coverage and user
numbers, while at the same time being the least studied directly internally, that
is, in terms of fine-granularity explainability. The model chosen is GPT-2XL.
This model is of particular interest because it is sophisticated enough to study
the high-level synthetic cognitive phenomena that interest us without reaching
the complexity of GPT-4, and even more so the multimodal GPT-4o, whose
complexity does not seem appropriate for the initial cognitive inquiry we are
pursuing; in other words, GPT-2XL appears to offer a good level of compromise.
Beyond this epistemic reason, a pragmatic reason also guided our choice of
GPT-2XL: for the first time, in 2023, OpenAI broke its "black box" tradition
(which is certainly logical from a commercial standpoint) regarding its products
by providing, in the context of the article by Bills et al. (2023), information
on the parameters and activation values of the neurons constituting GPT-2XL.
These parameters and activation values will therefore serve as our starting data
for this study.

For all practical purposes, let us clarify that GPT-2XL is the broad-spectrum
variant of GPT (Generative Pre-trained Transformer) 2, developed by OpenAI
and released in 2019. As its name suggests, GPT is a transformer, combining
layers of attention heads and feed-forward perceptron-type layers. Its activation
function is GeLU. Resulting from unsupervised training (at least directly) on a
dataset of 8 million web pages, the model has approximately 1.5 billion parameters
distributed across 48 layers. Each of these layers consists of 6.400 neurons and
operates on 1.600-dimensional embeddings; each layer (or transformer block)
comprises an attention sub-layer with 25 attention heads and two feed-forward
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network sub-layers. The purpose of the model’s training is text completion and
generation, making it capable, within its performance range, of a variety of tasks.

4.2 Our Specific Data Choices
For the sake of simplification, in this exploratory study, we limited ourselves to
the first two layers of GPT-2XL (layer 0 and layer 1) and the 6.400 neurons in
each of these layers.

Regarding the tokens and their activation values within these 2 x 6.400
= 12.800 formal neurons, we chose, for each of these neurons, to consider as
relevant data its top 100 most activated tokens on average, along with their
respective activation values. Indeed, the selection of only hyperactivated tokens,
as conducted by Bills et al. (2023), seems too restrictive to us because it is
not representative of the variability of tokens for which a neuron activates,
potentially giving us a too limited view of the category of tokens to which a given
neuron responds. In other words, we believe that Bills et al. (idem) may not
interpret neurons extensively but instead identify a very limited subcategory of
the category encoded by each of these neurons. Another argument that informed
our choice is that the tokens with high average activation values selected are,
de facto, less sensitive to contextual effects, which, although crucial (and this
constitutes, in a sense, a limitation of our approach), can themselves also limit the
extension of tokens belonging to a given neural category and thus the categorical
semantics of the neurons involved.

4.3 The Interpretative Construction of Our Observables
As we just said before, the average activation level of a token within a neuron
appears to us as a good operationalization of the equivalent in synthetic cog-
nition of the level of categorical membership in human cognition. Indeed, the
average activation of the 100 most activated tokens seems to us to be effectively
representative of the extent to which these tokens are part of the extension of a
category. This is, in the field of synthetic cognition, in line with the hypothesis
of Bills et al. (2023) that a neuron activates specifically for a property, and the
foundations of low-granularity explainability studies. Let us illustrate this idea
with a case highlighted by Bills et al. (idem): concerning neurons that activate
after a repeated occurrence of tokens, the stronger the repetition (i.e., the more
the involved token sequence meets the defining condition of this category, namely,
token repetition), the stronger the activation. This transposition between the
level of categorical membership and the level of activation also seems justified,
this time in the neurobiological field of human cognition, by the fact that the
activation function is the analog corollary of the transfer function (Savioz et al.,
2010), whose purpose is precisely to clarify the inputs belonging to the category
to which a biological neuron should react, by increasing the signal-to-noise
contrast, figure/ground (Servan-Schreiber, 1990), that is, the contrast between
what belongs to the category of elements for which the neuron should activate
versus residual elements.
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Similarly, the cosine similarity between two tokens appears to us as a good
measure of the notion of similarity between two items transposed from the domain
of human cognition to that of artificial cognition. Indeed, in the domain of human
thought, as we have seen, Thibault (1997) defines similarity based on (i) a space
of traits or dimensions considered relevant for making the comparison and (ii) a
mode of calculating the distance between the compared instances. In accordance
with this definition, cosine similarity is a commonly used measure in NLP to
gauge semantic proximity between two elements (Ham, 2023); this is based
on the dot product between the two involved multidimensional vectors, which
consists of measuring the distance, dimension by dimension in the semantic vector
space at play, between the two items to be compared. Cosine similarity can be
normalized from -1 to 1, where -1 indicates opposite vectors (opposite similarity),
0 indicates orthogonal vectors (no similarity), and +1 indicates identical vectors
(total similarity). It should be noted that we made the central choice to measure
cosine similarity within the embedding base of GPT-2XL, and not, for example,
in the more performant base of GPT-4, to avoid the methodological limitation
mentioned by Bills et al. (2023) and Bricken (2023) of matching synthetic
cognitive systems that do not rely on the same embedding system, i.e., not on
the same categorical segmentation display. However, for purposes of comparison
and plausibility checks of our data, we have also systematically used three
other freely available classic embedding bases: Alibaba-NLP/gte-large-en-v1.5,
Mixedbread-ai/mxbai-embed-large-v1, and WhereIsAI/UAE-Large-V1.

4.4 Statistical Details
Our descriptive and inferential statistical calculations were conducted using
Python libraries from the SciPy suite, based on the guidelines of Howell (2008)
and Beaufils (1996).

The preliminary study of data normality, conducted for exploratory pur-
poses as well as to verify the conditions for conducting certain parametric tests
(ANOVA, regression, Grubbs’ test), was twofold. Firstly, it was done using
various inferential tests, each with its respective advantages: Shapiro-Wilk test
(valid for small samples), Lilliefors test (valid for small samples and cases where
the parameters of the normal distribution are unknown and estimated from the
data), Kolmogorov-Smirnov test (better suited for large samples), and Jarque-
Bera test (focused on skewness and kurtosis, valid for large samples). It should
be noted that, concerning the cosine similarity measurements, these tests were
systematically performed on all four mentioned embeddings to verify the conver-
gence of the results. Secondly, a numerical descriptive approach was employed
(skewness and kurtosis indices, mean-median deviation) as well as a graphical
approach (QQ-plot comparing the actual distribution with the theoretical normal
distribution). This variety of approaches provides us with a broad-spectrum
view.

Two types of statistical units were identified. For our "micro" investigations,
neuron by neuron, the instantiated statistical units are tokens, specifically the
100 most activated tokens on average for each neuron, which we call "core
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tokens." On these first-order statistical units, the following parametric tests were
conducted: Fisher’s test for linear regression with normally distributed residuals
(comparing the variance explained by the regression model with the unexplained
variance), Grubbs’ test for identifying outliers in a normal distribution, and the
univariate Student’s t-test for comparing a mean to a standard on a normally
distributed variable (with correction for small sample sizes). The following
non-parametric tests were also conducted: Spearman’s rhô (for correlations on
an ordinal scale) and Wilcoxon-Mann-Whitney (for comparing group means on
an ordinal scale). Regarding the cosine similarity measures, all these parametric
and non-parametric tests were performed on the four indicated embeddings bases,
again to verify the convergence of our results.

For the "macro" investigations, which provide a global inference across all
neurons of a given layer, the statistical units considered were neurons, specifically
the 6.400 neurons of each layer. On these second-order statistical units, only one
non-parametric test was performed (primarily on the GPT-2XL embedding): the
univariate χ2 goodness-of-fit test , allowing us to infer the significance of "micro"
phenomena on the entire "macro" scale of neurons in a given layer. It should be
noted that if our study had been broader, covering all 48 layers of GPT-2XL,
a third relevant type of statistical unit would have emerged, that of the layers,
allowing for the generalization of identified phenomena to the entire model.

4.5 The Question Investigated and Its Operationalization
By choosing, as previously mentioned, to operationalize categorical membership
through activation and similarity through the cosine similarity measure, our op-
erationalized initial question becomes: Is the activation level of tokens related to
their cosine similarity level? Expressed in functional terms (in the mathematical
sense), this question is formulated as follows: Is there a relationship between
activation (in the activation space) and cosine similarity distance (in the cosine
similarity space)?

To further operationalize this question, we choose to study it from the
perspective of the proximity of activation intensity between tokens. This is based
on the inference that if the level of similarity (i.e., categorical proximity) were
related to the level of categorical membership, it would likely imply a relationship
between the proximity of categorical similarity intensity and the proximity of
categorical membership intensity. The question then becomes operationalized as
follows: Is there a relationship between activation proximity and cosine similarity
(proximity) between tokens?

In terms of statistical units, as already indicated, we choose to focus, for each
neuron, on the 100 tokens that are subject to its 100 highest average activations.
This choice is also made because it does not seem relevant to us to focus on
tokens that do not belong, or belong only weakly, to the category associated with
each neuron (i.e., those that are not highly activated); indeed, it seems unlikely,
except by statistical chance, to find such tokens that would be systematically
linked in terms of similarity. Thus, our question, as instantiated concerning
activation proximity, guides us methodologically towards the following final
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choice of primary statistical units: the series of pairs of successive core tokens
concerning their level of activation.

Ultimately, our question becomes: Is there, at the level of successive core-
token pairs for each neuron, a relationship between activation proximity and
cosine similarity (proximity)?

5 Results

5.1 Preliminary Statistical Explorations for
Methodological Purposes

For both layers (see Tables No. 1 & 2 and corresponding Graphs No. 1 & 2),
the comparison of minimum, mean, range, Q1, and CV (coefficient of variation)
values for the cosine similarity between successive core-token pairs (as per
their activation level) appears to highlight a relative deficiency in the three
embedding models—Alibaba, Mixedbred, and WhereIsAI—compared to GPT-
2XL: the latter exhibits a greater discriminative power. This phenomenon
could potentially be partially explained by the following methodological bias,
as intentionally noted earlier in our methodological section: the core tokens
involved are de facto compliant with the GPT-2XL tokenization system and not
necessarily aligned with the segmentation modalities that governed the other
three embedding databases. As a result, in all cases, the cosine values from the
GPT-2XL embeddings will be considered more reliable in the continuation of
this study. However, this does not imply outright rejection of insights from the
other embedding models for the purpose of (i) verifying the inter-embedding
convergence of our results, and (ii) especially since the current results are highly
convergent among these three embedding systems, which would still argue for a
certain reliability concerning them.

Table 1 : Statistical averages of the
descriptive indices of position and dispersion
for cosine similarities of pairs of successive

core-tokens (Layer 0, n = 6400).

Table 2 : Statistical averages of the
descriptive indices of position and dispersion
for cosine similarities of pairs of successive

core-tokens (Layer 1, n = 6400).
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Graph 1: Statistical Averages of Descriptive
Indices of Position and Dispersion of Cosine

Similarity for Pairs of Successive
Core-Tokens (Layer 0, n=6400).

Graph 2: Statistical Averages of Descriptive
Indices of Position and Dispersion of Cosine

Similarity for Pairs of Successive
Core-Tokens (Layer 1, n=6400).

For both layers (refer to Tables No. 3 & 4), we observe that inferential
indicators (Shapiro-Wilk, Lilliefors, Kolmogorov-Smirnov, and Jarque-Bera; for
α = .05) as well as descriptive ones (comparison mean/mode, symmetry, and
kurtosis) related to the cosine similarity between successive core-token pairs are
compatible with (which does not necessarily prove) a normality hypothesis in
2/3 of cases for measurements made from the GPT-2XL embeddings. However,
these indicators consistently drop for measurements based on the other three
embedding systems (see appendices for results related to "control neurons",
including QQ-plots / Henry’s line graphs based solely on GPT-2XL embeddings).
This divergence may again be partially explained by the variability of tokenization
systems. In both cases, normality appears lesser for layer 1 compared to layer 0.
Nonetheless, these results suggest greater relevance, in our upcoming statistical
setups, for the use of non-parametric tests (i.e., not assuming normality of the
variable involved), or at least particular caution in interpreting some of our
partial results that will be based on parametric tests.

Table 3 : Percentages of inferential statistics
(α = .05) and descriptive normality of cosine
similarity of pairs of successive core-tokens

(Layer 0, n=6400).

Table 4 : Percentages of inferential statistics
(α = .05) and descriptive normality of cosine
similarity of pairs of successive core-tokens

(Layer 1, n=6400).

5.2 Activation Proximity and Cosine Proximity
In our investigation of the relationship between activation proximity and cosine
(similarity) proximity among successive core-tokens of each neuron, Tables No. 1
(neurons from layer 0) and No. 2 (neurons from layer 1) seem enlightening. We
indeed observe low averages, relative to a theoretical positive span from 0 to 1 of
cosine similarity values, with respective values of .38 and .42 for measurements
made based on the embeddings from GPT-2XL. An inferential χ2 goodness-
of-fit measurement conducted on the percentage of neurons having average
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cosine similarity values below .5 (i.e., relatively low), assuming a theoretical
equidistribution hypothesis, is fully compatible with this initial descriptive
observation (p(χ2) < .05 for both layers, N=6400). This result is also consistent
with the similarly low average Q3 values (respectively .48 and .51), and the very
low average minimum cosine values (respectively .06 and .1). This exploratory
view supports the notion, at the level of the overall distribution of cosines taken
as a whole, that activation proximity (i.e., categorical level closeness between
two tokens) does not coincide with cosine proximity (i.e., categorical proximity
between these two tokens).

Graphs No. 3 (control neuron 0 from layer 0) and No. 4 (control neuron 0
from layer 1) show representative examples of the distribution of cosine similarity
as a function of the activation value of the first token in each pair (for the 100
core-tokens selected) (see appendices for other control neurons). From these
specific examples, we can globally observe: (i) again relatively low values of cosine
similarity (notably in the case of measurements with GPT-2XL embeddings), (ii)
a qualitatively significant variability of cosine similarity; this being consistent
across the four embedding models (even though the variability seems more
pronounced when the cosine is calculated from GPT-2XL embeddings, which is
expected given the more discriminant semantic power of this embedding system
for our specific data). This qualitative view, as it only pertains to examples,
illustrates the potential fact that, at the level of the overall distribution of cosines,
activation proximity does not correlate with cosine proximity; indeed, we do not
obtain here stable graphs (i.e., linear of the type y=a) with a relatively high
and constant value of cosine similarity for successive core-tokens regarding their
activation level.

Graph 3: Distribution of Cosine Similarity
Between Pairs of Successive Core-Tokens as

a Function of the Activation Value of the
First Token in Each Pair (Layer 0, Neuron

0).

Graph 4: Distribution of Cosine Similarity
Between Pairs of Successive Core-Tokens as

a Function of the Activation Value of the
First Token in Each Pair (Layer 1, Neuron

0).

We will next quantitatively study more specifically this initial global trend
of metric non-equivalence between activation proximity and cosine proximity;
through two phenomena of synthetic cognition, aimed at exploring an extreme
version of this trend, to demonstrate the potential strength it may possess.
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5.3 Categorical Discontinuity of Successive Core-Tokens
To investigate the previously mentioned trend, namely that, at the level of the
overall distribution of cosines, activation proximity (i.e., the level of categorical
belongingness between two tokens) does not equate to cosine proximity (i.e.,
categorical proximity between these two tokens), we test the following initial
hypothesis, which represents a first perspective on this trend, extremized as
already indicated to demonstrate the potential intensity it might occasionally
exhibit: there is a categorical discontinuity in successive core-tokens regarding
their level of activation. In other words, there are categorical breakpoints (i.e.,
semantic breaks) between successive core-tokens. Put another way, there are
particularly low cosine similarities between successive core-tokens relative to
their level of activation.

To test this, we first operationalize this hypothesis in terms of outliers in the
distribution of the cosine similarity variable, more precisely lower outliers, with
the notion of a lower outlier perfectly embodying the spirit of our hypothesis.
Tables No. 5 (layer 0) and No. 6 (layer 1) show the average numbers of significant
(p < .05) lower outliers per neuron obtained inferentially with the Grubbs test.
These average numbers (respectively .007 and .005 with GPT-2XL embeddings)
are very low and do not support our hypothesis. However, the reliability
of this test is questionable here since the condition for its application, the
normality of the distribution of the cosine similarity variable, is not well verified
as previously indicated. A non-parametric approach, here the interquartile
range, is therefore more secure; and it shows more lower outliers: on average,
respectively .151 and .149 lower outliers per neuron (again with GPT-2XL),
with extremely low average cosine similarity means (respectively .057 and .082),
clearly demonstrating the strong intensity that the categorical discontinuity of
successive core-tokens can sometimes take, even if this phenomenon remains
here marginal (but not nonexistent) and relatively statistically normal when
operationalized with an outliers approach. Table No. 7 qualitatively illustrates
this categorical discontinuity by showing core-tokens that are semantically quite
distant from each other.
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Table 5 : Average statistics of lower outliers
of cosine similarity for successive core-token

pairs (Layer 0, n=6400).

Table 6 : Average statistics of lower outliers
of cosine similarity for successive core-token

pairs (Layer 1, n=6400).

Table 7 : Examples of lower outliers cosine similarity for successive core-token pairs (Layer 1,
calculated using interquartile range on GPT-2XL, embeddings).

We continue to study our hypothesis that there exists, at the level of the overall
distribution of cosines, particularly low cosine similarities between successive core-
tokens relative to their level of activation; but this time, with a less extremized
operationalization, intended to make it more manifest. This is done by taking as
an indicator the low cosines, which we define, neuron by neuron, as being lower
than the threshold of the minimum cosine of the neuron increased by 10% of
its range; this corresponds, in average values, to thresholds of .14 for neuron 0
and .18 for neuron 1 (cf. Tables No. 1 & 2). We then mechanically observe (cf.
Tables No. 8 & 9) significantly higher average percentages of frequencies of low
values per neuron (measured with GPT-2XL embeddings), respectively 5.06%
and 5.17%; this, with very low cosine averages (.089 for neuron 0 and .129 for
neuron 1), especially compared to the rest of the average cosines (respectively
.397 and .431). These average percentages of low cosines appear significant
(p(χ2) < .05; χ2

1 = 1064; χ2
2 = 1125) when evaluated inferentially using a χ2

goodness-of-fit test taking as the theoretical distribution a 1%/99% distribution
corresponding to a situation where these low cosines would be almost nonexistent
(which should be the case if there were a relationship between categorical
proximity and activation proximity). These elements are compatible with our
hypothesis of categorical discontinuity of successive core-tokens postulating the
existence of particularly low cosine similarities; a hypothesis, again, aimed at
highlighting in a relatively extremized manner the fact that activation proximity
(i.e., the level of categorical belongingness between two tokens) and cosine
proximity (i.e., categorical proximity between these two tokens) do not go hand
in hand (at the level of the overall distribution).
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Table 8: Average Statistics of Low Cosine
Similarity (cosine < min+0.1*Range) for
Pairs of Successive Core-Tokens (Layer 0,

n=6400).

Table 9: Average Statistics of Low Cosine
Similarity (cosine < min+0.1*Range) for
Pairs of Successive Core-Tokens (Layer 1,

n=6400).

5.4 Categorical Inhomogeneity of Successive Core-Tokens
at the Same Activation Level

Continuing to explore the trend initially mentioned at the level of the overall
distribution of cosines—that activation proximity is not equivalent to cosine
proximity—we now test the following second hypothesis, which represents another
perspective on this trend, again extremized to demonstrate the potential intensity
it might have: there exists a categorical inhomogeneity of successive core-tokens
at the same activation level. In other words, core-tokens having the same levels
of activation are not categorically closest. This new extremized viewpoint this
time focuses not immediately on the lowest cosine similarities, as was done
before, but on cases where activations are close to being identical and should
then be strongly associated with high cosine similarities if activation proximity
and cosine proximity were phenomena that went hand in hand.

To operationalize the testing of this hypothesis, we define successive core-
tokens with (almost) identical activations as those whose activation levels are
equal to two decimal places. We define, for each neuron, a "d" distance indicator
that equals the gap between the maximum cosine similarity of this neuron
and the cosine similarity of successive core-tokens at the same activation; a
distance whose superiority to the first quartile Q1 of the cosine distribution
for this neuron is then verified, to show that statistically core-tokens at the
same activation are not categorically closest. Tables No. 10 (layer 0) and No.
11 (layer 1) indicate first that tokens with (almost) identical activations are
very numerous (respectively 47.25 and 35.31 tokens for 100 tokens per neuron),
allowing us to consistently study the phenomenon of interest here. We see that
the average distances are very large (.44 and .46, when measured with GPT-2XL
embeddings, but also quite significant with other embeddings more inclined to
over-represent strong cosine similarities). The percentages of neurons showing a
distance d greater than Q1 are extremely high (respectively 80.72% and 78.94%);
and significant (p(χ2) < .05) when evaluated inferentially with a univariate
χ2 goodness-of-fit test based on a theoretical 25%/75% distribution consistent
with our use of Q1. These elements seem compatible with our hypothesis of
mono-activational categorical inhomogeneity of successive core-tokens, at the
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level of the overall distribution of cosines.

Table 10 : Average Statistics of Distance d
(d = Max(COS(neuron)) -

(COS(core-token(n), core-token(n’)))) &
Comparison of d-Q1(cosine) for Pairs of

Successive Core-Tokens with the Same
Activation (Layer 0, n=6400).

Table 11 : Average Statistics of Distance d
(d = Max(COS(neuron)) -

(COS(core-token(n), core-token(n’)))) &
Comparison of d-Q1(cosine) for Pairs of

Successive Core-Tokens with the Same
Activation (Layer 1, n=6400).

To provide another angle of study on our hypothesis of categorical inhomo-
geneity, we implement the following complementary operationalization, consisting
of comparing, for each neuron, its average cosine similarity relative to successive
core-tokens at the same activation to the threshold of its third quartile (Q3) of
the cosine distribution, to show, in line with our hypothesis, the inferiority of
the former to the latter. Tables No. 12 and No. 13 show that this is very much
the case for all embedding systems (100% with GPT-2XL embeddings). This
is confirmed at the inferential level with extremely high percentages of cases
where p(t) < .05 in the context of a univariate Student’s t-test comparison of
means (cosines) to a standard (Q3); again for all available embedding models;
with 99.67% for layer 0 and 95.66% for layer 1 with GPT-2XL embeddings.
We also note quite low average cosine similarities with measurements based
on GPT-2XL embeddings (respectively .375 and .406), as well as with other
embeddings (keeping in mind their tendency to overestimate strong cosine val-
ues). This second angle of view is again compatible, at the level of the overall
distribution of cosines, with our hypothesis postulating that core-tokens having
the same levels of activation are not categorically closest, intended to show in
an exacerbated way to what extent activation proximity and cosine proximity
would not be isomorphic elements; that is, to what extent the proximity of
categorical belonging level between two tokens is a phenomenon that would be
dissociated from the categorical proximity between these two tokens. Table No.
14 exemplifies this hypothesis of mono-activational categorical inhomogeneity
qualitatively by showing pairs of tokens with the same activations that are widely
disparate from a semantic viewpoint.
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Table 12 : Average statistics of the cosines
of successive core-token pairs with the same

activation & comparison to Q3(cosine)
(Layer 0, n = 6400).

Table 13 : Average statistics of the cosines
of successive core-token pairs with the same

activation & comparison to Q3(cosine)
(Layer 1, n = 6400).

Table 14 : Examples of core-token pairs with the same activation level (Layer 1, neuron 113).

5.5 Synthesis
Let us now summarize our statistical treatments aimed at studying, at the
level of successive core-tokens of each neuron, the characteristics of a possible
existence of a relationship between activation proximity and cosine similarity
(proximity). We obtained statistical results that are coherent with the two
hypotheses formulated regarding phenomena of synthetic cognition:

• A hypothesis of categorical discontinuity of successive core-tokens regarding
their level of activation, positing that there are particularly low cosine
similarities between successive core-tokens.

• A hypothesis of mono-activational categorical inhomogeneity of successive
core-tokens, stating that core-tokens with the same levels of activation are
not categorically closest.

6 Discussion of Our Results
Our series of studies questioned, concerning successive core-tokens, the possible
existence of a relationship between proximity of categorical membership level
and proximity of categorical similarity; proximities operationalized in terms of
level of activation for the former and level of cosine similarity for the latter. Our
results tend toward the idea of an independence, at the global level, between
activation proximity and cosine proximity; i.e., towards a non-equivalence, for
given tokens, between their proximity of belonging to a neuronal category and
the intensity of their similarity. In other words, just because two tokens are
close in terms of activation does not mean they are close at the categorical level.
In the context of our current work, this phenomenology is manifested through
two observables of synthetic cognition that we have attempted to elucidate: the

18



categorical discontinuity of successive core-tokens and their mono-activational
categorical inhomogeneity.

6.1 Current Trends in Artificial Neuronal Explainability
Several current interpretative trends in the field of synthetic neuronal explain-
ability seem to us to be elementary keys, to be combined, for understanding
the phenomenology of synthetic divergence between activation and similarity.
We briefly present these trends below before attempting to elaborate on their
interrelationship.

Synthetic neuronal polysemy is a primary concept. It refers to the idea that
synthetic neurons are conceptually distributive (Fan et al., 2023), meaning they
can correspond simultaneously to multiple semantic concepts (Bills et al., 2023).
Thus, these authors suggest that neurons (i) may not have simple explanations
but only long and disjunctive interpretations, (ii) should perhaps not be thought
of as semantically homogeneous computational units. Bricken et al. (2023)
further denote that formal neurons respond to unrelated traits.

Authors tend to link synthetic polysemy to the notion of superposition, which
expresses the idea that cognitive properties and semantic traits can be ventilated
within many polysemic neurons (Olah et al., 2020). And that a single concept is
thus distributed across different neurons (Bills et al., 2023).

Another notion introduced by Bills et al. (2023), which seems relevant here
and refers to a potential illusion of interpretability (Pichat, 2024b), is that of
an alien concept. This means that formal neuronal concepts might be concepts
for which humans have no word (no signifier in the sense of Saussure) or might
even correspond to "natural abstractions" not yet discovered by humans (lacking
human signified). This is insofar as, the authors indicate, language models deal
with things different from us, for instance, statistical constructs useful for the
task for which they have been trained, like predicting the next token.

Finally, Bricken et al. (2023) argue that the neuron does not constitute a
good unit of semantic interpretation by introducing the idea of the existence of
intermediate synthetic semantic vector spaces. A neural network would create
a virtual intermediate vector space, each base vector of which would be an a
priori independent, fundamental, unique, and mono-semantic feature. Each of
these features is obtained by linear combination of neurons, i.e., each feature is
a vector on these neurons. Each feature thus constitutes an interpretable linear
direction, an elementary semantic direction. Hence, the activation vector at
the output of a neuronal layer could be decomposed in this intermediate space
whose unit vectors are the elementary features. Each of these features would, by
definition, be invisible at the level of a single neuron, which is why the neuron
might not necessarily be the right unit of analysis according to the authors; they
indicate, for example, in their study, that only 512 neurons can represent tens
of thousands of features. From these fundamental semantic directions, more
complex directions would be created, those constituted by the neurons, which
then appear de facto polysemic insofar as they are conceptually a compressed
projection, i.e., low-dimensional, of these much vaster intermediate vector spaces.
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6.2 The Dissociation of Categorical Proximity and Categor-
ical Similarity as a Sign of the Categorical Singularity
of Synthetic Cognition

Following our presentation of current trends in neuronal explainability, let’s
attempt to address our central empirical observation by reshaping and transposing
them within a suitable explanatory framework. Why isn’t activation proximity
a corollary of similarity? Because a neuron codes for a synthetic category, which
it creates in the context of its targeted activity, and this category is not unified;
that is, it is polysemous. This polysemy makes this category appear as an alien
concept (which it effectively is for our human cognition) insofar as it results
from a superposition of sub-categorical dimensions generated by its intermediate
categorical vector base (a base that we do not conceptualize in the same terms
as Bricken et al. (2023) but rather, for a given neuron in layer n, in terms of
categorical dimensions output from its precursor neurons in layer n-1). Two close
activations (cf. the notion of categorical discontinuity) and even identical ones (cf.
the notion of mono-activational categorical inhomogeneity) can thus correspond
to crystallizations, materializations, local instantiations (by quantum analogy,
we could speak of wave function collapses) of different sub-categorical dimensions.
In other words, close activations can thus involve the actualizations of distinct
sub-dimensions; which will then mechanically translate into cosine similarity
measures demonstrating categorical discontinuity or inhomogeneity, concepts
specific to synthetic cognition; at least concepts that appear to us when we study
this synthetic cognition from our own human reference framework postulating
an a priori semantic logical coherence between activation and similarity.

Neuronal polysemy does not seem to be categorically segmented into acti-
vation segments: categorical segments and activation segments appear to be
two dissociated registers in synthetic neuronal cognition. Because this synthetic
neuronal categorical cognition, unlike our human thought, is not categorically
unified, at least not unified within concepts analogous to ours. Therefore, seeking
a convergence between categorical proximity and cosine proximity is partly ipso
facto an anthropocentric approach that could only lead to the empirical corre-
lational divergence that the synthetic notions of discontinuity and categorical
inhomogeneity illustrate. This is especially true within the framework of our
methodological approach of using cosine similarity as an instrument to measure
categorical proximity: cosine similarity, being based on the vector categorical
space of the initial embeddings of GPT-2XL (which is by construction more in
tune with human semantics) is not the same as the recombinant vector spaces
(by the values of their respective aggregation functions) of the neurons of the
layers investigated.

Speaking of neuronal polysemy might epistemologically be a cognitive an-
thropocentrism (Pichat, 2024). Indeed, we use the term polysemy because
synthetic categories appear semantically inhomogeneous given that we have no
human thought categories to pair them with. But isn’t it the very nature of
categorical abstraction to bring together initially separate categorical segments?
The invoked polysemy is, in fact, the result of a categorical grouping to which
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we are not (at this stage of our conceptual evolution) accustomed, and we thus
resemble in using this term the inhabitants of "flatland" from Watzlawick (1977)
confined to viewing a multi-dimensional world through the only sub-dimensional
prism proper to their world.

7 Conclusion
Our hypothesis of categorical discontinuity of successive core-tokens regarding
their activation level (postulating that there are particularly low cosine similar-
ities between successive core-tokens) and our hypothesis of mono-activational
categorical inhomogeneity of successive core-tokens (stating that core-tokens with
the same activation levels are not categorically closest) are complementary; this
is because they pertain to the question of the global existence of a relationship
between activation proximity and cosine proximity (similarity). They should be
complemented by a third hypothesis, focusing on the possible evolution of the
distributional dynamics of this relationship depending on the level of value of the
activation segments; this hypothesis aims to investigate a possible categorical
convergence of pairs of successive core-tokens based on activation, proposing
that as the activation levels of successive core-tokens (i.e., close at the activation
level) increase, the categorical variability of these core-tokens decreases (i.e.,
categorical proximity increases). We will soon publish our results in this area
(Pichat et al., in press a), other results not mentioned here pushing us towards
this new hypothesis formulated.

The key element posited, in our discussion of the obtained results in order
to attempt to provide them with a coherent explanatory framework, is that the
categorical segment created by a given neuron of a layer n (more precisely by
its aggregation function among others) is de facto decomposable into a vector
space of sub-categorical dimensions; these being the result of a projection of the
input vector space of this neuron, the input vector space being (by mathematical
construction of its aggregation function) composed of the categorical output
dimensions of each of the precursor neurons (on layer n-1) of this neuron. In
other words, in terms of explainability, a neuron could immediately be thought of
as multi-dimensional, that is, composed of sub-categorical dimensions which will
tend to separately be involved depending on the tokens; at least the tokens with
"low activation" (mono-categorical triggered) as opposed to the tokens with "high
activations" which will tend to conjointly involve sub-dimensions (co-categorical
triggered) as we are currently updating in some other research project. We
will soon explore this postulate, in the context of a "genetic" study aimed at
explaining the categorical abstraction carried out by artificial neurons on the
basis of a reconstructive re-composition of the categorical segmentations of their
most contributive precursor neurons (i.e., with the most significant neuronal
connection weights).
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A.1 Descriptive Mean Satistics of Cosine Similarities of Pairs of Suc-
cessive Core-Tokens (Control Neurons)
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A.1 Descriptive Mean Statistics of Cosine Similarities of Pairs of Successive Core-Tokens
(Layer 0, Neuron 0).

A.1 Descriptive Mean Statistics of Cosine Similarities of Pairs of Successive Core-Tokens
(Descriptive Statistics of Cosine Similarities of Pairs of Successive Core-Tokens (Layer 0

Neuron 0, N=100).
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A.1 Descriptive Mean Statistics of Cosine Similarities of Pairs of Successive Core-Tokens
(Layer 1, Neuron 0).

A.1 Descriptive Mean Statistics of Cosine Similarities of Pairs of Successive Core-Tokens
(Descriptive Statistics of Cosine Similarities of Pairs of Successive Core-Tokens (Layer 1

Neuron 0, N=100)).
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A.2 Normality Ratio Statistics of Cosine Similarities of Pairs of
Successive Core-Tokens (Control Neurons)

A.2 Normality Ratio Statistics of Cosine Similarities of Pairs of Successive Core-Tokens
(Layer 0, Neuron 0).

A.2 Normality Ratio Statistics of Cosine Similarities of Pairs of Successive Core-Tokens.

A.2 Normality Ratio Statistics of Cosine Similarities of Pairs of Successive Core-Tokens
(Layer 1, Neuron 0).
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A.2 Normality Ratio Statistics of Cosine Similarities of Pairs of Successive Core-Tokens.

A.3 Distribution of Cosine Similarities of Pairs of Successive Core-
Tokens as a Function of Activation Rank of the First Token of Pairs
(Control Neurons)

A.3 Distribution of Cosine Similarities of Pairs of Successive Core-Tokens as a Function of
Activation Rank of the First Token of Pairs.
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A.4 Sample of Inferior Outliers of Cosine Similarities of Pairs of
Successive Core-Tokens (Interquartile range, GPT2-XL)

A.4 Sample of Inferior Outliers of Cosine Similarities of Pairs of Successive Core-Tokens
(Interquartile range, GPT2-XL) (Layer 0).

A.4 Sample of Inferior Outliers of Cosine Similarities of Pairs of Successive Core-Tokens
(Interquartile range, GPT2-XL) (Layer 1).

A.5 Sample of Weak Cosine Similarities of Pairs of Successive
Core-Tokens (GPT2-XL)

A.5 Sample of Weak Cosine Similarities of Pairs of Successive Core-Tokens (GPT2-XL)
(Layer 0).

A.5 Sample of Weak Cosine Similarities of Pairs of Successive Core-Tokens (GPT2-XL)
(Layer 1).
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A.6 Sample of Successive Core-Tokens with Similar Activations

A.6 Sample of Successive Core-Tokens with Similar Activations (Layer 0).
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A.6 Sample of Successive Core-Tokens with Similar Activations (Layer 1).
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