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Abstract
This study investigates the ability of perceptron-type neurons in

language models to perform intra-neuronal attention ; that is, to identify
different homogeneous categorical segments within the synthetic thought
category they encode, based on a segmentation of specific activation zones
for the tokens to which they are particularly responsive. The objective
of this work is therefore to determine to what extent formal neurons
can establish a homomorphic relationship between activation-based and
categorical segmentations. The results suggest the existence of such
a relationship, albeit tenuous, only at the level of tokens with very
high activation levels. This intra-neuronal attention subsequently enables
categorical restructuring processes at the level of neurons in the following
layer, thereby contributing to the progressive formation of high-level
categorical abstractions.

1 Theoretical Context
1.1 Attention Heads

Before the rise of transformers, natural language processing models primarily
relied on recurrent (RNN, LSTM) and convolutional (CNN) architectures. While
RNNs and LSTMs could capture long-term dependencies through their memory
mechanisms, they suffered from the vanishing gradient problem, making it
difficult to learn relationships over long sequences. Moreover, their sequential
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nature limited parallelization and slowed down training. CNNs, on the other
hand, offered better parallelization but were ill-suited for global dependencies
due to their limited receptive field, which depended on network depth. These
approaches thus struggled with capturing long-range dependencies and faced
parallelization challenges [124, 125]. These limitations motivated the introduction
of transformers and the self-attention mechanism, which overcame these
constraints by enabling efficient parallel processing while capturing long-range
relationships. The introduction of self-attention by Vaswani [126] marked a major
turning point in NLP.

Transformers leverage self-attention, where each element in a sequence
weighs the importance of other elements, facilitating the modeling of complex
dependencies. Multi-head attention enhances this approach by allowing different
attention heads to specialize in various aspects of representation. Devlin et al.
[127] demonstrated that certain BERT heads capture syntactic relations, such
as subject-verb links, while others focus on more global semantic relationships.
Radford et al. [128] showed that multiple attention heads in GPT improve
sentence context modeling by capturing distributed information across different
input sequence positions. This capability enables transformers to enhance the
richness and hierarchy of representations, improving generalization across various
tasks.

Within a transformer, each attention layer comprises multiple heads, each
performing an attention operation on a linear projection of the inputs. Self-
attention projects representations into three sets of vectors : queries (Q), keys
(K), and values (V). For an input sequence X ∈ RT ×b, where T is the sequence
length and b the vector dimension, these matrices are defined as :

Q = XW T , K = XW T , V = XW T

where W T ∈ Rb×bk are learned weight matrices, and bk is the dimension of
keys and queries. Attention is computed using the scaled dot-product attention :

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

The normalization by
√

dk stabilizes training by preventing large-scale values
in dot products [126]. Multi-head attention applies these operations in parallel
over h different projections of Q, K, and V :

headi = Attention(QW G
i , KW K

i , V W V
i )

The concatenation of heads followed by a linear projection yields the final
output :

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O

This architecture enables the extraction of contextual information from
multiple perspectives and enhances the capture of complex relationships in data.
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Studies on attention mechanisms have shown that some heads are specialized,
while others are redundant. Luong et al. [129] demonstrated that certain
heads capture precise syntactic relations, whereas others focus on global
semantic relationships. [130, 131] observed that removing several heads does not
significantly impact model performance, suggesting compensatory mechanisms
among the remaining heads.

Statistical mechanics approaches have been used to analyze interactions
between attention paths. [132] modeled the contribution of attention heads via
a kernel decomposition :

K =
h∑

i=1
Ki

Each kernel Ki corresponds to a specific head, allowing an evaluation of its
role in the model’s final representation. Results indicate that some heads play
a structuring role, while others can be eliminated without significant impact.
This observation paves the way for transformer architecture optimizations by
reducing redundant heads and improving model interpretability.

The computational efficiency of transformers has been extensively researched.
Sparse Transformers [23] reduce attention complexity to O(n log n) by introducing
a sparse attention structure. Reformer [133] optimizes memory management via
key-value factorization and local attention. Performer [134] replaces standard
attention with a linear approximation, reducing complexity to O(n). This method
relies on random projections of keys and queries into a lower-dimensional space,
where dot products are computed approximately using kernels favoring efficient
factorization. This avoids costly dense matrix multiplications while maintaining
high accuracy, making attention scalable even for long sequences. Longformer
and BigBird [135] combine local and global attentions to efficiently process long
sequences.

Other studies have analyzed attention head specialization in specific contexts.
Clark et al. [136] examined BERT attention matrices and found that some
heads learn specific syntactic relationships, such as subject-verb dependencies
or anaphoric relations. Transformer-XL [137] introduced a recurrent memory
mechanism that captures longer-term dependencies, improving text generation
and dialogue modeling.

Finally, attention mechanisms have extended to other domains, including
computer vision with Vision Transformer (ViT) [138] and Swin Transformer
[139], as well as neuroscience and cognitive process modeling [140].

1.2 Human Attention
Biologically, human attention arises from the limited capacity of the neuronal

system to process information. It manifests through selective mechanisms in
the acquisition, activation, and utilization of sensory or memory data (such
as knowledge or rules) [41, 4]. This results in an oriented response, focusing
information retrieval on specific characteristics. Neurocognitive research on
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attentional mechanisms, inspired notably by Posner’s work [81, 82, 87], highlights
the existence of a frontal attention system associated with conscious attention
and planning, and a posterior system, located in the parietal lobe, involved in
visuospatial processes and shifts in attentional focus.

In cognitive psychology, attention is conceptualized as the calibration of
activity toward a specific goal, thereby enhancing efficiency in the collection
and execution of information (selectivity, accuracy, speed) for a given task
[77, 90, 76, 84, 148, 30, 91, 26, 108, 45]. During task execution, attention is
managed by the central nervous system, which determines the relevance of
internal information (such as knowledge or schemas) that ensures execution
quality.

Generally, two cognitive functions are associated with attention [31] :
• Signal detection, which primarily relies on vigilance and exploration to

identify the appearance of a specific stimulus.
• Selective attention, focused on specific stimuli while excluding others.
Vigilance refers to the ability to concentrate on a flow of information to

detect a specific signal [56], which may appear rarely but requires a rapid
reaction [21, 46]. It is negatively affected by the level of uncertainty regarding
the targeted elements [17]. Vigilance can be defined as an adjustable attentional
beam influenced by the anticipation of the signal’s appearance at a specific
location [78, 60, 62].

Visual exploration [111, 108], on the other hand, involves an active search
for stimuli, contrasting with the passive expectation of their emergence [80].
It is characterized by a scanning strategy for recognizing attributes within a
given environment. According to the Feature Integration Theory [95, 86], a
mental map for each visual attribute represents occurrences within the visual
field, which are regularly inspected in parallel. Here, attentional processes play
a role in mental binding, assembling various attributes of the same object
while inhibiting irrelevant characteristics. The Similarity Theory [32] analyzes
attentional exploration as an evaluation of the proximity between target stimuli
and distractors. Meanwhile, the Guided Search Theory [20, 1] divides exploratory
attention into two phases : first, the activation of a global representation of
potential targets, followed by a serial analysis to identify the most activated
target.

Selective attention is often explored through the cocktail party effect
[22, 55, 11], referring to the ability to follow a conversation among others
in the background. The characteristics of this attentional focus include sensory
properties, sound volume, and the spatial location of the target speech. In this
context, the Filter Theory [18, 112] suggests that a filter selects sensory streams
to receive deep processing. However, this model evolved into an attenuation
approach [93, 53], where all information is reduced in perceptible intensity,
leaving only residual data close to targeted criteria. The distribution of limited
attentional resources [52] is also relevant for managing multiple tasks in parallel
with increased efficiency.

The aspects of attentional mechanisms relevant to our study lie at the
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intersection of vigilance and selective attention. These processes—detecting
a targeted type of information and selectively focusing on specific data
characteristics—correspond to the phenomenon of interest here : the impact of a
neuron’s activation level in response to an incoming token on the intra-neuronal
detection and selective attention of tokens exhibiting specific categorical features.

1.3 Attentional Processes and Conceptualization
The notion of conceptualization 1is one of the major contributions of the

theory of conceptual fields proposed by Vergnaud [100, 101]. As we will see below,
conceptualization is a central cognitive process at the intersection of the vigilance
and selective attention mechanisms mentioned earlier, specifically in the context
of categorizing information received by a cognitive system. This notion, developed
in the field of human thought, is therefore particularly relevant, heuristically, to
our current investigation concerning the identification and selective attention of
specific data (tokens) at the level of internal processing carried out by formal
neurons.

Conceptualization is an attentional representational activity whose purpose
is the identification of the operational characteristics of stimuli (in our case,
tokens) to which it applies, in order to ground a cognitive system’s activity on
these characteristics and thus enhance its efficiency. The cognitive function of
conceptualization is to extract an operational form of knowledge, which becomes
the object of specific attentional focus. In the domain of human cognition, this
attentional focus is largely unconscious and non-verbalizable ; for this reason,
Vergnaud [100] refers to it as knowledge-in-action.

Vergnaud [101] defines a concept-in-action, resulting from the selective
attentional activity of conceptualization, as a category of thought learned to
be relevant for a given task (in our case, the targeted processing of textual
data). Regarding this notion of concept-in-action, three key points should be
highlighted :

1. Concepts-in-action are categories of thought through which a cognitive
system identifies, selects, and captures certain pieces of information present
in a given situation (a set of tokens in the case of language processing).
In other words, concepts-in-action function as cognitive attentional filters
that allow a given situation to be selectively “read” or “perceived.”

2. From an epistemological perspective, there exists a potentially infinite
number of formal types of thought categories. The most commonly

1. Traditionally, research on concepts considers them as cognitive units stored in memory and
linked to a word or expression, with an associated class of objects sharing common properties.
Experimentally, these approaches have led to studies on familiarity or typicality judgments,
category comparisons, classification, and more generally, categorical identification—studies
that we have previously synthesized [67, 68]. However, the term conceptualization, as used by
Vergnaud [101], does not refer to these classical approaches, which focus on the predicative form
of the concept. Instead, it aligns with a developmental and pragmatic perspective, emphasizing
the primary form of the concept : its operational form.
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encountered types are : object, property, relation, transformation, condition,
and process.

3. Concepts-in-action serve as pragmatic vectors of synthetic thought,
organizing attentional information processing by segmenting the token
space according to the contingent goals of the finalized activity for
which a language model has been trained. Indeed, the functionality of
concepts-in-action lies in their ability to enable the neural system to focus
its attention on a limited number of selected elements, learned to be crucial
for the success of the synthetic system’s activity. As such, they support a
representation of only those situational variables whose consideration is
essential for the effectiveness of the task at hand.

The approach developed by Vergnaud [101] establishes conceptualization as
a fundamentally economic and pragmatic attentional cognitive activity. This
inherently pragmatic finalization of conceptualization is the reason why the
concepts it extracts are in action, meaning they are encapsulated within the
cognitive system’s activity.

An artificial neuron can be described as a synthetic cognitive operator of
conceptualization, whose purpose is to select, from a set of incoming tokens, one
or more specific subgroups of tokens. These subgroups constitute the categorical
extension of the critical concept(s)-in-action that the neuron is functionally tasked
with identifying selectively. In this sense, the neuron performs an attentional
focusing activity on certain types of tokens that need to be selected and filtered
to optimize the efficiency of the linguistic processing task in which the neuron
participates.

2 Research Problem
2.1 Mathematico-Cognitive Factors of Categorical Segmen-

tation and Intra-Neuronal Attention
In a previous study [69], we explored the mathematico-cognitive factors

influencing how an artificial neural network (of the perceptron type) in a language
model performs categorical segmentation of the tokens presented to it. Based on
the neuronal aggregation function of the form

∑
(wi,j xi,j) + b, which partially

governs this cognitive process, we identified three factors contributing to this
conceptual partitioning :

• The x-effect : Synthetic Categorical Priming. This effect refers to the
influence of synthetic thought categories activated in neurons of layer n
on the activation of categories in neurons that are strongly connected via
attention in the next layer. In other words, a token that strongly belongs
to an initial category in layer n is more likely to belong to a strongly
associated category in layer n + 1.

• The w-effect : Synthetic Inter-Categorical Attention. This effect influences
the degree of importance that a receiving neuron (in layer n + 1) assigns to
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the categories of neurons in the preceding layer (n), based on connection
weights. This process results in categorical complementation, where each
attentively focused precursor category contributes a unique sub-dimensional
category (comprising highly specific tokens) to the formation of the
receiving category. Thus, the category of a receiving neuron is constructed
by assembling complementary categorical sub-dimensions derived from its
precursor categories.

• The
∑

-effect : Synthetic Categorical Phasing. This effect refers to the
tendency for tokens that are jointly activated within precursor categories
(layer n) to be more likely to be part of the categorical extension of their
strongly associated attentionally focused category in layer n + 1. This
process manifests as categorical intersection.

The phenomenon of interest here, as a reminder, is the extent to which the
specific activation level of a neuron in response to a token is linked to a particular
categorical value of that token within the category carried by the neuron. In
other words, is a given segment of activation values associated with a distinct
categorical segment, allowing a neuron to selectively focus its attention on a
specific categorical segment based on its associated activation span ?

The three mathematico-cognitive factors we have just outlined—which could
be related to the genesis and structuring of human thought categories [10, 47,
38, 40, 7, 58, 110]—are particularly relevant to our research question. Indeed,
these three factors directly determine, before the application of the nonlinear
activation function, the activation value that the neuronal aggregation function
assigns to a given token. In other words, these factors define the activation
zone, the activation segment within which a processed token is positioned by
the involved neuron.

To what extent do these three factors—both as a matrix of activation values
assigned to tokens by a neuron and as carriers of categorical effects, as previously
described—delineate specific activation segments paired with specific categorical
segments that could thus become the object of selective attentional focus ?
Alternatively stated, how are these factors, through neuronal activation values,
associated with the conceptualization of certain categorical segments, on which
it is both relevant and effective for the neuron to focus its internal attention ?

2.2 Synthetic Categorical clipping and Intra-Neuronal
Attention

In a previous study [71], we highlighted that the three mathematico-cognitive
factors of categorical segmentation, as detailed above, govern a mechanism of
synthetic categorical clipping. This clipping process results in the elaboration and
separation of a form from a categorical background. More precisely, categorical
clipping is the phenomenon in synthetic cognition by which a specific categorical
sub-dimension is extracted from the category carried by a precursor neuron (in
layer n) to contribute to the formation of a superordinate category (in layer
n + 1).

7



Categorical clipping manifests through a series of synthetic characteristics :
• Categorical reduction, meaning that the categorical sub-dimension extrac-

ted from a precursor category contains tokens that are semantically more
homogeneous compared to the original category.

• Categorical selectivity, referring to the extraction of a small subgroup of
tokens from the larger set of tokens that initially characterized the original
category.

• Separation of initial embedding dimensions, associated with a differentiation
of these embeddings, with some being more specifically related to the
outlined categorical sub-dimension.

• Partitioning of categorical zones within initial embedding dimension, where
certain zones are more specifically associated with the extracted sub-
dimensions.

Categorical clipping is an activity that extracts a categorical sub-dimension
from the category associated with a neuron in layer n, but this process occurs
externally to the originating neuron, specifically within one of its paired neurons
in layer n + 1. However, to what extent is this clipping—ultimately driven
by activation values—executed based on intra-neuronal attentional focus and
conceptualization of specific categorical sub-segments within the original category,
sub-segments that would be associated with particular activation segments ?

2.3 Categorical Restructuring and Intra-Neuronal Atten-
tion

In a previous study [72], we explored the process of synthetic categorical
restructuring, specifically the generation, at each neuronal layer n + 1, of new
artificial thought categories that are more functional for segmenting the world
of tokens in alignment with the purpose of the neural network’s activity. This
process falls under reflective abstraction in the Piagetian sense [71], applied to
the categories of layer n.

This categorical restructuring is directly dependent on the coactivity of the
three factors of categorical segmentation outlined earlier (categorical priming,
inter-categorical attention, and categorical phasing). We posited that the
restructuring phenomenon is particularly linked to inter-categorical attention,
given that this latter factor, by mathematical construction of the neuronal
aggregation function, is both a necessary condition and an amplifier of the other
two factors (priming and phasing).

We demonstrated that the joint action of inter-categorical attention and
categorical phasing leads to partial categorical confluence : the categorical
sub-dimensions extracted from layer n categories, at the level of a neuron that
is strongly attentive to them in layer n + 1, tend to semantically converge to a
relative extent. We also highlighted that the combined impact of inter-categorical
attention and categorical priming generates activation dispersion : a categorical
sub-dimension extracted from a category in layer n does not correspond to a
continuous segment of token activations at the originating neuron.
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How are both this partial categorical confluence and this activation dispersion,
occurring during the transition from layer n to layer n + 1, realized through
conceptualization and intra-neuronal attentional focus at the level of layer n ?
In other words, how does partial categorical confluence, driven by the coactivity
of synthetic factors such as inter-categorical attention and categorical phasing,
become possible through the identification—via activation—of specific categorical
sub-segments to be considered at the level of the involved precursor neuron ? And
to what extent is activation dispersion compatible with intra-neuronal attentional
focus based on specific activation segments, which might appear paradoxical ?

2.4 Conceptualization and Intra-Neuronal Attention
From a mathematical perspective, a synthetic neuronal processing unit results

from the composition of functions : a nonlinear activation function (ReLU,
SELU, GELU, ELU, etc.) applied to a linear aggregation function of the form∑

(wi,j xi,j)+b. Within a language model, this matrix-based processing associates
an input token (or rather its embedding) with an output activation value.

What is the epistemological significance of this activation value from a
semantic standpoint ? Is this activation value correlated with a specific semantic
value ? Are different activation segments within the activation space associated
with distinct categorical segments in the semantic space of the involved neuron ?
For a given neuron, is there a homomorphic relationship between its activation
space and its categorical space ? Can these spaces be divided and segmented into
identifiable and pairable activation and categorical zones ?

In other words, is it possible to locate intra-neuronal activation segments
that correspond to specific sub-semantic structures within the thought categories
represented by the neurons ? Put differently, to what extent does the activation
value serve as a quantifier enabling conceptualization—an attentional mapping
of specific intra-neuronal semantic zones ?

3 Methodology
3.1 Methodological Positioning

To situate our current research methodologically, we position it within a
set of explainability investigation techniques aimed at making artificial neural
networks more comprehensible. These methods seek, with varying degrees of
cognitive depth, to explain internal mechanisms or interpret the meaning and
function of information flows within these networks, whether studied at the level
of individual neural layers, groups of layers, or the entire model.

Studies focusing on macroscopic explainability examine fluctuations between
input data and outputs to clarify the relationship between what is given to the
system and what it produces. In this approach, gradient-based methods assess the
influence of each input by analyzing the partial derivatives of each input dimension
[37]. Input attributes can be evaluated through various elements, including feature
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importance [28], token relevance [37], or attention coefficients [6]. Furthermore,
example-based methods observe variations in outputs when input modifications
are introduced, allowing for an analysis of how slight data alterations affect model
predictions [106], as well as assessing the implications of input perturbations
such as deletion, negation, mixing, or masking [3, 107, 96]. Other approaches
focus on conceptually mapping inputs to evaluate their influence on observed
outputs [19].

Microscopic explainability methods, on the other hand, examine the interme-
diate internal states of language models rather than their overall output, analyzing
interconnections and activations of individual neurons or groups of neurons. Some
studies explore how to segment and interpret neural activations in a layer based
on the inputs from the previous layer [103]. Others aim to adjust activation
functions to enhance interpretability [106]. Certain techniques investigate the
knowledge embedded within neurons, extrapolating internal meanings through
significance matrices [29, 42]. Finally, some approaches assess statistical patterns
in neural responses based on specific datasets [9, 61, 33, 106, 27]. Our current
work falls within this latter methodological category.

3.2 Model and Statistical Units Used
Building on our previous work [67, 68, 69, 70, 71], we focused on OpenAI’s

transformer-based GPT model, specifically the GPT-2XL version. This choice
was made because GPT-2XL offers sufficient complexity to investigate advanced
cognitive processes while avoiding, for an initial exploration, the interpretative
challenges posed by GPT-4 or GPT-4o. In 2023, OpenAI released detailed
documentation on the parameters of GPT-2XL, as outlined by Bills et al., [9],
which we leveraged in our current investigation.

To reduce the scope of our statistical analyses, we focused on the first
two perceptron layers of GPT-2XL, each containing 6,400 neurons, for a total
of 12800 artificial neurons. Regarding linguistic elements (tokens) and their
associated activations, our study centered on the 100 tokens exhibiting the highest
mean activations per neuron, which we termed core-tokens. When analyzing
relationships between neurons in layers 0 and 1, we limited our selection for each
neuron in layer 1 to its 10 most strongly connected neurons from layer 0, based
on attention weight values.

3.3 Statistical Processing
For our statistical analyses, we used the SciPy library, in accordance with

the recommendations of [50, 8, 34, 35].
Our verification of the normality of the data, to assess the feasibility of

parametric tests, was conducted in two steps. First, we applied inferential tests :
the Shapiro-Wilk test, suitable for small datasets ; the Lilliefors test, used when
distribution parameters are unknown ; the Kolmogorov-Smirnov test for large
samples ; and the Jarque-Bera test, which quantifies skewness and kurtosis in
large samples. Complementing this, in a second step, we examined skewness and
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kurtosis coefficients and visualized distributions using QQ-plots to compare the
recorded data with a theoretical normal distribution. To check the homogeneity
of variances among data subgroups whose relationships were being analyzed,
we applied Bartlett’s test, which is sensitive to deviations from normality, and
Levene’s test, which is less affected by such deviations.

These preliminary checks indicated limited normality in our data. Conse-
quently, our statistical analyses relied on non-parametric approaches, specifically :

• The Kruskal-Wallis test, used to investigate the relationship between a
categorical variable defining independent groups and an ordinal variable.
This test was applied based on ranking the numerical activation data of
tokens, adhering to the standard conditions for its application, including
groups with a minimum of six observations. Effect sizes for the Kruskal-
Wallis test were measured using Cohen’s d. For pairwise group comparisons,
given k total groups, k(k − 1)/2 comparisons were performed, using a rank
difference coefficient adapted for post hoc situations, measured on a z-scale,
with a significance threshold α divided by k(k − 1).

• The univariate χ2 goodness-of-fit test, applied while ensuring compliance
with its theoretical and observed frequency requirements, thus avoiding
alternatives suited for small samples, such as Fisher’s or Monte Carlo
methods. Effect sizes were measured using the risk ratio.

For certain analyses, we employed a typological classification approach via
hierarchical clustering. This classification was configured as follows : (i) a top-
down classification approach, (ii) the use of Euclidean distance to measure
distances between statistical units, (iii) a predefined number of five clusters, (iv)
Ward’s method as the aggregation technique, (v) prior standardization of the
data.

3.4 Methodological Operationalizations
To quantify semantic proximity between tokens, we used cosine similarity

based on the embedding space of GPT-2XL. This approach allowed us to avoid
methodological limitations identified by Bills et al., [9] when attempting to relate
various artificial cognitive systems using non-unified embedding foundations.

To examine the potential relationship, for each given neuron, between its
categorical segments and its activation segments, we employed two opposing
methodological approaches :

• A "top-down" approach, which starts from predefined categorical segments
and investigates the extent to which they are associated with distinct
activation segments. These categorical segments were first defined using
hierarchical clustering based on the GPT-2XL embeddings of the 100 core-
tokens defining the category associated with each investigated neuron. Then,
for methodological diversification, segmentation was also performed using
prompt engineering with OpenAI’s GPT-4o model. This first approach was
further extended by measuring the interweaving and activation overlaps of
the categorical token segments obtained via prompt engineering.
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• A "bottom-up" approach, which instead starts from predefined activation
segments and evaluates whether these segments exhibit semantic proximity.
To ensure methodological diversification, activation segments were defined
first through activation quartiles and then through hierarchical clustering
of activations.

4 Results
As a reminder, our research question is as follows : does a synthetic process

of conceptualization and intra-neuronal attention exist, enabling each neuron
to identify and isolate specific categorical segments within the artificial thought
category it carries, based on determined activation segments ?

We operationalized our empirical investigation of this question through two
methodologically opposing studies, which we will present sequentially :

• A "top-down" study, in which we started from categorical segments to
examine their respective average activation values.

• A "bottom-up" study, in which we first isolated specific activation segments
and then analyzed their respective categorical homogeneity.

4.1 Activation Differentiation of Categorical Clusters
As part of our top-down study, for each perceptron neuron in layers 0 and

1 of GPT-2XL, we decomposed the thought category it carries (through its
100 core-tokens, i.e., the tokens with the highest average activation) into five
categorical clusters. These clusters represent subcategories that are relatively
homogeneous according to a given semantic criterion, allowing the initial category
to be partitioned meaningfully.

To illustrate this, we present below the example of neurons n°5 (layer 1)
and n°5065 (layer 0) using our genetic neural viewer . This serves to investigate
the relationship between categorical segmentation (clustering) and activation
segmentation. More specifically, we aim to determine whether there is a significant
difference in average activation values among the categorical clusters obtained.

12
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A first operationalization of our approach involved generating five categorical
token clusters for each neuron, based on hierarchical clustering applied to the
GPT-2XL embeddings of the 100 core-tokens associated with that neuron. From
a methodological perspective, we clarify the following points :

• The use of GPT-2XL embeddings, like any operationalization, is a specific
methodological choice. It does not claim to measure any intrinsic semantic
reality—an epistemologically meaningless notion—but rather represents
one particular modality, among many possible, for evaluating semantic
phenomena within a given contingent semantic space. Our interpretations
must therefore remain confined to this specific semantic contingency.

• In our overall statistics, we retained only those neurons whose semantic
clustering resulted in clusters containing at least six tokens, ensuring
compliance with the conditions for using the Kruskal-Wallis inferential test
for mean comparisons.

• For each neuron, we systematically designated as "K1" the categorical
cluster with the lowest mean activation value among its constituent tokens,
and so forth up to "K5."

Table n°1 summarizes our results for the 2194 neurons analyzed in layer 0.
Overall, we observe a low percentage (21.46%) of neurons exhibiting a significant
difference (α = 5%) in mean activations (µKn

) across their five categorical
clusters. This finding is corroborated by the low percentages (π(pKn,Km

< α′))
of significant mean activation differences in post hoc pairwise comparisons of
categorical clusters (with an adjusted significance threshold α′ = α/20).

However, an interesting trend emerges : while the mean activation distances
(µ(δKn,Km

)) between successive categorical clusters are generally small, the
average activation distance between clusters K4 and K5 (µ(δK4,K5) = .0955) is
slightly larger than that between clusters K1 and K2 (µ(δK1,K2) = .0512). This
trend aligns with the slightly higher effect size (measured using Cohen’s d) for
the activation distance between K4 and K5 (µ(dK4,K5) = .2785) compared to
K1 and K2 (µ(dK1,K2) = .2404).

More strikingly, this trend becomes much more pronounced when considering
the strong effect size of the mean activation difference between clusters K1 and
K5 (µ(dK1,K5) = .8202). One might hypothesize that the weak significance of
post hoc inferential tests comparing µK1 and µK5 (π(pK1,K5 < α′) = 14.02%) is
due to a bias resulting from the small number of involved tokens.

Graph 1 visually summarizes the main data mentioned here.
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Nneuron 2194
π(pKW < .05) 21.4612
µK1 1.7117 µ(δK1,K2) .0512
µK2 1.7629 µ(δK2,K3) .0416
µK3 1.8045 µ(δK3,K4) .0484
µK4 1.8530 µ(δK4,K5) .0955
µK5 1.9485 µ(δK1,K5) .2368

µ(dK1,K2) .2404 π(pK1,K2 < α′) .1370
µ(dK2,K3) .1650 π(pK2,K3 < α′) .0913
µ(dK3,K4) .1664 π(pK3,K4 < α′) .2283
µ(dK4,K5) .2785 π(pK4,K5 < α′) 1.3242
µ(dK1,K5) .8202 π(pK1,K5 < α′) 14.0183

Table n°1 : Comparison of mean activations between categorical clusters from
hierarchical classification on tokens’ embeddings (layer 0).

Graph n°1 : Comparison of mean activations between categorical clusters from
hierarchical classification on tokens’ embeddings (layer 0).

These initial results suggest the following dual trend :
• Activation indifferentiation : A weak difference in mean activation values

among categorical clusters associated with lower mean activation values.
• Relative activation differentiation : A stronger difference in mean activation

values among categorical clusters that involve one or more higher mean
activation values.

Table n°2 and its associated summary graph n°2 display similar results,
but with even more pronounced trends. Notably, the effect size contrast is
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stronger between clusters K4 and K5 (µ(dK4,K5) = .3363) compared to K1 and
K2 (µ(dK1,K2) = .2631). Additionally, when comparing clusters K1 and K5,
we observe an extremely high effect size (µ(dK1,K5) = .9962), associated with
increased significance (π(pK1,K5 < α′) = 22.08%).

Nneuron 2192
π(pKW < .05) 31.4325
µK1 1.8300 µ(δK1,K2) .1062
µK2 1.9362 µ(δK2,K3) .0896
µK3 2.0258 µ(δK3,K4) .1119
µK4 2.1377 µ(δK4,K5) .2143
µK5 2.3519 µ(δK1,K5) .5219

µ(dK1,K2) .2631 π(pK1,K2 < α′) .0456
µ(dK2,K3) .1869 π(pK2,K3 < α′) .3193
µ(dK3,K4) .2042 π(pK3,K4 < α′) .5931
µ(dK4,K5) .3363 π(pK4,K5 < α′) 2.1898
µ(dK1,K5) .9962 π(pK1,K5 < α′) 22.0803

Table n°2 : Comparison of mean activations between categorical clusters from
hierarchical classification on tokens’ embeddings (layer 1).

Graph n°2 : Comparison of mean activations between categorical clusters from
hierarchical classification on tokens’ embeddings (layer 1).

Still within the framework of our top-down study, a second operationalization
of our approach involved generating five categorical token clusters for each neuron
(again based on its 100 core-tokens), this time using a system of prompts applied
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to GPT-4 within a Python-coded structure. This allowed us to investigate our
research question from an alternative semantic observation framework coupled
with a different clustering methodology.

Table n°3 and its associated summary graph (Graph 3), covering 2316 neurons
from layer 0, consistently exhibit the same types of results as previously observed.

Nneuron 2316
π(pKW < .05) 18.3938
µK1 1.7443 µ(δK1,K2) .0629
µK2 1.8072 µ(δK2,K3) .0512
µK3 1.8584 µ(δK3,K4) .0592
µK4 1.9176 µ(δK4,K5) .1015
µK5 2.0190 µ(δK1,K5) .2747

µ(dK1,K2) .2981 π(pK1,K2 < α′) .0864
µ(dK2,K3) .1982 π(pK2,K3 < α′) .0432
µ(dK3,K4) .1982 π(pK3,K4 < α′) .0000
µ(dK4,K5) .2803 π(pK4,K5 < α′) .2591
µ(dK1,K5) .8985 π(pK1,K5 < α′) 11.9603

Table n°3 : Comparison of mean activations between categorical clusters from GPT4
clustering prompt on tokens’ embeddings (layer 0).

Graph n°3 : Comparison of mean activations between categorical clusters from GPT4
clustering prompt (layer 0).

The same pattern is once again observed in Table n°4 and its corresponding
summary graph n°4, which pertain to 1942 neurons from layer 1. This observation
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could support a hypothesis suggesting that the synthetic phenomena we highlight
tend to increase in deeper layers.

Nneuron 1942
π(pKW < .05) 29.8661
µK1 1.8086 µ(δK1,K2) .1229
µK2 1.9316 µ(δK2,K3) .1099
µK3 2.0415 µ(δK3,K4) .1341
µK4 2.1756 µ(δK4,K5) .2223
µK5 2.3979 µ(δK1,K5) .5892

µ(dK1,K2) .3321 π(pK1,K2 < α′) .1030
µ(dK2,K3) .2424 π(pK2,K3 < α′) .1030
µ(dK3,K4) .2451 π(pK3,K4 < α′) .0515
µ(dK4,K5) .3461 π(pK4,K5 < α′) .8754
µ(dK1,K5) 1.0948 π(pK1,K5 < α′) 23.0690

Table n°4 : Comparison of mean activations between categorical clusters from GPT4
clustering prompt on tokens’ embeddings (layer 1).

Graphe n°4 : Comparison of mean activations between categorical clusters from GPT4
clustering prompt (layer 1).

From these various initial "top-down" investigations, a dual trend consistently
emerges regarding the existence of a potential synthetic intra-neuronal attention
mechanism that enables a neuron to identify and locate, within the artificial
thought category it represents, specific categorical segments determined based
on given activation segments :
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• Activation indifferentiation among categorical clusters corresponding to
lower average activation values.

• Relative activation differentiation among categorical clusters associated
with one or more higher average activation values.

4.2 Activation Interleaving of Categorical Clusters
We remain within the framework of our top-down investigation into the

possible existence of a synthetic mechanism of conceptualization and intra-
neuronal attention. This mechanism would enable each neuron to identify and
differentiate specific categorical segments within its associated thought category,
based on particular activation zones. However, we now adopt a significantly
different methodological perspective. Here, we examine the extent to which the
categorical clusters obtained (using the previous method involving a GPT-4
clustering prompt) form distinct segments in terms of their activation levels. In
other words, we investigate whether activation segments specific to categorical
clusters overlap (i.e., contain tokens from multiple categorical clusters) or remain
distinct (i.e., the activation segment of each categorical cluster contains only
tokens from that cluster).

This is operationalized as follows :
• Let xmin(Ki) be the lowest activation value among tokens in categorical

cluster Ki, and xmax(Ki) the highest activation value in the same cluster.
• Let n(Ki) be the number of tokens (from the full set of five clus-

ters K1, K2, K3, K4, K5) whose activation values fall within the range
[xmin(Ki), xmax(Ki)], and m(Ki) the number of tokens belonging to cluster
Ki.

• Let N be the total number of clustered tokens (100, or fewer when GPT-4
was unable to cluster all tokens).

• For a given categorical cluster Ki, there is no overlap if n(Ki) = m(Ki).
For each neuron in layers 0 and 1 of GPT-2XL, we analyzed this

operationalization using contingency tables structured as follows and performed
an inferential χ2 test. We included only cases where clusters had a theoretical
count strictly greater than 5 (to meet the conditions for applying χ2) and an
observed count also strictly greater than 5.

Ki

Observed n(Ki) N − n(Ki)
Expected m(Ki) N − m(Ki)
Risk ratio n(Ki)

m(Ki)

Tables n°5 and n°6, which respectively include 2316 eligible neurons from layer
0 and 1942 eligible neurons from layer 1, reveal strong activation interleaving.
The mean risk ratios (µρ) are consistently high, ranging between 4.5 and 5,
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indicating a substantial interleaving effect : on average, an activation segment
associated with a given categorical cluster contains 4 to 5 times more tokens
than the number of tokens explicitly assigned to that cluster. This phenomenon
is statistically significant, with very high percentages (π(p(χ2) < .05)) of cases
where the observed and expected token distributions are markedly different for
each cluster.

Nneuron 2316
µρ 5.1103

K1
π(p(χ2) < .05) 100

µρ 4.9323
K2

π(p(χ2) < .05) 100
µρ 4.8721

K3
π(p(χ2) < .05) 100

µρ 4.9705
K4

π(p(χ2) < .05) 100
µρ 5.0677

K5
π(p(χ2) < .05) 99.8705

Table n°5 : Percentages of interleaving activations of categorical core-token clusters
(Layer 0).

Nneuron 1942
µρ 4.6122

K1
π(p(χ2) < .05) 99.9485

µρ 4.6212
K2

π(p(χ2) < .05) 100
µρ 4.6998

K3
π(p(χ2) < .05) 99.9485

µρ 4.6624
K4

π(p(χ2) < .05) 99.9485
µρ 4.5496

K5
π(p(χ2) < .05) 99.6395

Table n°6 : Percentages of interleaving activations of categorical core-token clusters
(Layer 1).

The interleaving of activation segments defined by categorical clusters suggests
that specific categorical segments are not strictly associated with well-defined
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activation segments. This result aligns with the activation indifferentiation
(among categorical clusters with lower mean activation values) highlighted in
the previous section.

Moreover, it does not appear to contradict, at this stage, the relative activation
differentiation (between categorical clusters with higher mean activation values)
mentioned earlier. Indeed, this result does not indicate whether the "excess" tokens
(i.e., those interleaved across activation levels) in clusters K5 predominantly
originate from all categorical clusters (which might contradict the activation
differentiation phenomenon) or primarily from clusters K4 with fewer from K1
(which would be consistent with the activation differentiation phenomenon).

4.3 Categorical Homogeneity of Activation Clusters
We now examine the results of our second bottom-up study, in which we first

isolated specific activation segments and then investigated their respective levels
of categorical homogeneity. In other words, we assessed whether tokens from a
given activation segment tend to be categorically similar. This analysis directly
serves our central research question : does a synthetic process of conceptualization
and intra-neuronal attention exist, enabling each neuron to identify and isolate
specific categorical segments within the artificial thought category it carries,
based on determined activation segments ?

From a methodological perspective, categorical proximity was assessed using
cosine similarity based on GPT-2XL embeddings. As previously stated, the use of
GPT-2XL embeddings is a specific operational choice, which does not represent
an absolute semantic ontology but rather one particular way—among others—to
measure categorical proximity within a given semantic space. Consequently, our
interpretations must be contextualized within this specific semantic contingency.

More precisely, our methodological approach was as follows. For each of the
6,400 neurons in the first two layers of GPT-2XL, we divided the activation
space into four activation segments, forming four groups (G1, G2, G3, G4) of
tokens, ordered by their mean activation levels. For each of these four groups, we
determined its internal semantic homogeneity (cosGi) by computing the mean
pairwise cosine similarity of all its tokens. We then calculated an index :

d = cosGi −Q3(cos100)

where Q3(cos100) is the third quartile of the pairwise cosine similarities among
the 100 core-tokens of the neuron. This index d thus expresses the extent to
which tokens in group Gi are among the most semantically similar (relative to
the overall semantic proximities of tokens within the neuron). Specifically, the
more negative d is, the less semantically similar the concerned tokens are within
their neuron.

Initially, we operationalized the segmentation of the activation space into
four activation segments using quartiles, producing four groups each containing
25% of the 100 core-tokens for a given neuron. This approach ensured activation
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clusters were homogeneous in terms of token count. Table n°7 presents the results
obtained for the 6,400 neurons in layer 0.

First, we observe that the mean cosine similarities (µ(cosGi)) within the four
groups are relatively low, ranging from .34 to .39. Additionally, the percentages
(π(µ(cosGi −Q3(cos100) < 0)) of cases where mean cosine similarities fall below
the third quartile of all pairwise similarities are very high (all above 97%),
indicating that the mean cosine similarities of the Gi groups are generally
not among the highest for each neuron. These percentages are associated
with extremely low and thus highly significant inferential probabilities (p(χ2)),
assuming a theoretical uniform distribution. These findings suggest a low
categorical homogeneity of activation clusters.

A second noteworthy result is that the mean cosine similarities (µ(cosGi)
increase, albeit moderately but systematically, from G1 (the least activated
tokens, .3485) to G4 (the most activated tokens, .3933). Correspondingly, the
distances µ(cosGi) − Q3(cos100) tend to decrease slightly in absolute value, as
do their associated negativity percentages (π(µ(cosGi) − Q3(cos100) < 0)). This
suggests a mild but consistent trend of increasing categorical homogeneity in
activation clusters for higher activation values. Graph 5 visually synthesizes
these results.

Nneuron 6400
µ(cosG1) .3485

µ(cosG1) − Q3(cos100) -.1267
π(µ(cosG1) − Q3(cos100) < 0) 99.9531

p(χ2) .0000
µ(cosG2) .3538

µ(cosG2) − Q3(cos100) -.1213
π(µ(cosG2) − Q3(cos100) < 0) 99.9844

p(χ2) .0000
µ(cosG3) .3644

µ(cosG3) − Q3(cos100) -.1108
π(µ(cosG3) − Q3(cos100) < 0) 99.9688

p(χ2) .0000
µ(cosG4) .3933

µ(cosG4) − Q3(cos100) -.0819
π(µ(cosG4) − Q3(cos100) < 0) 97.6250

p(χ2) .0000

Table n°7 : Average cosine similarities of activation clusters by quartiles (Layer 0).
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Graph n°5 : Average cosine similarities of activation clusters by quartiles (Layer 0).

Table n°8 and its associated summary graph n°6 exhibit exactly the same
type of results for the 6,400 neurons in layer 1. Once again, we observe low
µ(cosG1) values, but with a relative progressive increase as activation levels
rise, as well as a gradual relative decrease in the gap between µ(cosG1) and
Q3(cos100).
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Nneuron 6400
µ(cosG1) .3753

µ(cosG1) − Q3(cos100) -.1235
π(µ(cosG1) − Q3(cos100) < 0) 99.9219

p(χ2) .0000
µ(cosG2) .3829

µ(cosG2) − Q3(cos100) -.1159
π(µ(cosG2) − Q3(cos100) < 0) 99.9375

p(χ2) .0000
µ(cosG3) .3956

µ(cosG3) − Q3(cos100) -.1033
π(µ(cosG3) − Q3(cos100) < 0) 99.9219

p(χ2) .0000
µ(cosG4) .4261

µ(cosG4) − Q3(cos100) -.0728
π(µ(cosG4) − Q3(cos100) < 0) 96.6563

p(χ2) .0000

Table n°8 : Average cosine similarities of activation clusters by quartiles (Layer 1).

Graph n°6 : Average cosine similarities of activation clusters by quartiles (Layer 1).

In a second phase, and to further diversify our methodology, we applied
our bottom-up approach by segmenting the activation space into four activation
segments, this time using hierarchical clustering on the activation values of the
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100 core-tokens for each neuron. This method has the advantage of producing
activation clusters that are more homogeneous in terms of their mean activation
values. This added value is particularly relevant given that our analysis focuses
on differentiating categorical proximities based on activation zones. Hierarchical
clustering is particularly suited for this task, as it tends to identify activation
segments that are more distinct from each other (maximizing inter-cluster
variance) while ensuring greater internal homogeneity within each cluster
(minimizing intra-cluster variance).

Table n°9 and its corresponding summary graph n°7, covering 6,400 neurons
from layer 0, as well as Table n°10 and its related summary graph n°8, covering
6,400 neurons from layer 1, consistently reveal the same synthetic phenomena
observed previously. However, in this case, there is a stronger effect of increasing
categorical homogeneity in activation clusters for higher activation values.

Nneuron 6400
µ(cosG1) .3888

µ(cosG1) − Q3(cos100) -.0863
π(µ(cosG1) − Q3(cos100) < 0) 73.5938

p(χ2) .0000
µ(cosG2) .4318

µ(cosG2) − Q3(cos100) -.0433
π(µ(cosG2) − Q3(cos100) < 0) 65.4219

p(χ2) .002
µ(cosG3) .4494

µ(cosG3) − Q3(cos100) -.0258
π(µ(cosG3) − Q3(cos100) < 0) 59.4844

p(χ2) .0578
µ(cosG4) .4665

µ(cosG4) − Q3(cos100) -.0087
π(µ(cosG4) − Q3(cos100) < 0) 50.5625

p(χ2) .9104

Table n°9 : Average cosine similarities of activation clusters by hierarchical
classification (Layer 0).
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Graph n°7 : Average cosine similarities of activation clusters by hierarchical
classification (Layer 0).

Nneuron 6400
µ(cosG1) .4444

µ(cosG1) − Q3(cos100) -.0544
π(µ(cosG1) − Q3(cos100) < 0) 66.4688

p(χ2) .001
µ(cosG2) .4769

µ(cosG2) − Q3(cos100) -.0219
π(µ(cosG2) − Q3(cos100) < 0) 60.5625

p(χ2) .0346
µ(cosG3) .4899

µ(cosG3) − Q3(cos100) -.0090
π(µ(cosG3) − Q3(cos100) < 0) 55.1875

p(χ2) .2995
µ(cosG4) .5013

µ(cosG4) − Q3(cos100) .0024
π(µ(cosG4) − Q3(cos100) < 0) 47.0625

p(χ2) .5569

Table n°10 : Average cosine similarities of activation clusters by hierarchical
classification (Layer 1).
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Graph n°8 : Average cosine similarities of activation clusters by hierarchical
classification (Layer 1).

As part of our final exploration of the existence of a synthetic intra-neuronal
attention process, all our results regarding the categorical homogeneity of
activation clusters tend to indicate a low categorical homogeneity of activation
clusters, accompanied by a gradual positive evolution of this homogeneity as
activation values increase.

5 Discussion and Conclusion
5.1 Summary and Interpretation of Results

The central question of this study was to determine the extent to which
the specific activation level of a neuron in response to a token is linked to
a categorical value of that token within the neuron’s own category. More
precisely, in topological terms, we investigated whether a given segment of
activation values in a neuron correlates with a distinct categorical segment,
thereby enabling the neuron to selectively focus its intra-neuronal attention
on a specific categorical segment based on its associated activation range. Put
differently, from an epistemological and functional perspective, is the activation
space of a neuron compartmentalized into activation zones whose significance
and function are to facilitate the attentional detection of specific categorical
zones ?

Our methodological approach was twofold :
• A textittop-down approach, where we started from categorical segments to

examine their respective mean activation values.
• A bottom-up approach, where we first isolated activation segments and

then investigated their categorical homogeneity. It should be noted, once
again, that we made the specific choice of operationalizing categorical
homogeneity measurement using only the embedding system of GPT-2XL
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as our observational framework, acknowledging that other valid approaches
could have been pursued.

In our top-down approach, the first study examined the extent to which
significant differences in mean activation values existed between categorical
clusters. This revealed two main tendencies regarding the potential existence of
a synthetic process of intra-neuronal attention that enables a neuron to identify
and localize specific categorical segments within the artificial thought category
it represents, based on their respective activation spans :

• Activation indifferentiation (i.e., weak differences in mean activation values)
among categorical clusters with lower mean activation values.

• Relative activation differentiation (i.e., stronger differences in mean
activation values) among categorical clusters involving one or more higher
mean activation values.

Continuing our top-down investigation of intra-neuronal attention, we
identified activation interleaving among categorical clusters—meaning that given
categorical segments are not confined to distinct activation segments but instead
overlap. We noted that this finding is compatible with the observed activation
indifferentiation (between categorical clusters with lower mean activation values)
and, at this stage, does not contradict the observed activation differentiation
(between categorical clusters with higher mean activation values).

Finally, in our bottom-up study of intra-neuronal attention, our results suggest
a low categorical homogeneity of activation clusters, accompanied by a relative
but consistent increase in homogeneity as activation values rise.

Overall, these findings are compatible with the existence of an intra-neuronal
attention mechanism that can be characterized as follows :

1. No direct correlation between activation segmentation and categorical
segmentation for strongly activated tokens (since all tokens considered in
this study are core-tokens, meaning they are highly activated on average).

2. A weak but systematic relationship between activation segmentation and
categorical segmentation for tokens with the highest activation levels.

In other words, activation appears to play the role of an intra-neuronal
attentional vector : it enables a neuron to identify and delimit, within the set of
tokens constituting its categorical extension, those tokens specifically associated
with the highest activation values. These tokens are relatively more homogeneous
from a categorical perspective and therefore constitute a distinct categorical
segment of particular interest.

This intra-neuronal attention mechanism, by facilitating attentional focus on
only the highest activations, would thus operate an attentional dichotomization :
that is, it establishes a qualitative activation threshold (i.e., very high activations)
from a quantitative activation continuum, beyond which intra-neuronal selective
attention is triggered. This intra-neuronal attention is directly linked to vigilance
mechanisms [60, 21, 46, 62] and selective attention processes [55, 11, 112, 53].
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5.2 Integration of Current and Previous Findings
The absence of a relationship between activation segmentation and categorical

segmentation for tokens with high activation levels is largely compatible with
the synthetic process of categorical divergence proposed in one of our previous
investigations [67]. Categorical divergence refers to the following two synthetic
cognitive phenomena :

1. Categorical discontinuity of successive core-tokens in terms of activation
levels, meaning that the cosine similarity between successive core-tokens is
particularly low.

2. Categorical inhomogeneity among core-tokens with the same activation
levels, indicating that core-tokens sharing similar activation levels are not
necessarily the most categorically similar.

This phenomenon of categorical divergence may be linked to the polysemantic
nature of neuronal concepts [64, 39, 9, 16], distinguishing it from traditional
human categorical approaches [49, 149, 150, 151, 152, 153, 154, 155].

Conversely, the relative correlation we observed between activation and
categorical segmentation for tokens with very high activation values aligns with
the categorical convergence phenomenon identified in a previous study [68].
Categorical convergence postulates that as the activation levels of successive
core-tokens increase, their categorical variability decreases. This aligns with
the fundamental characteristic of thought categories being ad hoc [5, 156, 153],
meaning they serve a purpose, which, in synthetic categories, might involve
minimal alignment with human thought categories and partial convergence
toward human-like semantic elements. Furthermore, the tokens specifically
involved in this very high activation and categorical convergence process could
be interpreted as corresponding to categorical prototypes [149, 150].

In another previous study [69], we identified three mathematical-cognitive
factors influencing categorical segmentation performed by each synthetic neuron :

• Categorical priming (effect x) : A token strongly activating a neuron in
layer n has a higher probability of activating a strongly connected neuron
in layer n + 1. This categorical priming is conceptually linked to its human
counterpart [113, 114, 115, 116].

• Inter-categorical attention (effect w) : The stronger the connection between
a neuron in layer n + 1 and a neuron in layer n, the higher the probability
that a token strongly activated in the first neuron will also be strongly
activated in the second.

• Categorical phasing (effect Σ) : Tokens that simultaneously activate
different neurons in layer n have a higher probability of activating a
strongly connected neuron in layer n + 1. This notion of categorical
phasing is inspired by similar concepts in cognitive psychology and human
neuroscience [54, 117, 118, 119, 120, 121, 122, 123].

These three factors drive the determination of the activation value associated
with a given token. By mathematical construction of the aggregation function, a
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strong and combined effect of these three factors on a given token results in a
very high activation value for that token. Consequently, this token is positioned
within the activation segment of very highly activated tokens for a given neuron.
These factors—categorical priming, inter-categorical attention, and categorical
phasing—thus enable and guide intra-neuronal attention, which manifests as
an elective attentional focus on highly activated tokens. These tokens define a
specific categorical segment that is particularly relevant for the neuron involved.

In a separate prior study [70], we identified a synthetic categorical contouring
mechanism, which consists of the separation of a categorical form from its
background at the neuronal level [141, 142, 143]. More specifically, categorical
contouring is the process by which a specific categorical sub-dimension is
extracted [144, 145, 146, 147] from the category vectorized by a precursor
neuron (in layer n) to contribute to the formation of a superordinate category
(in layer n + 1). This contouring is directly driven by the mathematical-cognitive
factors mentioned above. The categorical sub-dimension extracted through this
process is immediately determined by intra-neuronal attention : by mathematical
construction of the neuronal aggregation function, intra-neuronal attention
enables the selective focus on a segment of tokens—those with very high activation
values—from which the sub-dimensions will statistically be extracted.

Furthermore, we have demonstrated [71] that the co-activity of inter-
categorical attention and categorical phasing generates a synthetic phenomenon
of partial categorical convergence : the categorical sub-dimensions extracted from
layer n categories, when strongly linked to an attentionally connected neuron in
layer n + 1, exhibit a tendency toward partial semantic convergence. Categorical
convergence is directly influenced by intra-neuronal attention, as this attention
mechanism allows for the identification and selection of specific tokens—those
with very high activations—through which categorical phasing and, subsequently,
categorical convergence take place.

5.3 Intra-Neuronal Attention and Conceptualization
As previously discussed, conceptualization [100, 101] refers to the identifica-

tion of specific operational characteristics within a class of objects (in this case,
tokens) on which a cognitive system must act to ensure appropriate and effective
processing. Conceptualization is inherently an attentional phenomenon, as it
enables a selective focus on a limited subset of objects or specific attributes of
these objects, thereby aligning cognitive activity with their particular properties.

An artificial neuron can be interpreted as a synthetic cognitive agent of
conceptualization, whose function is to selectively attend to and filter a subset of
tokens from the broader set to which it strongly reacts. This subset constitutes
the categorical extension of the critical concept-in-act that the neuron is designed
to identify selectively. Consequently, the neuron performs an attentional focusing
activity on specific token types, selecting and filtering them to optimize the
language processing task in which the neuron is engaged.

The paroxysmal concept-in-act thus identified consists of tokens with
very high activation levels. These particular tokens, which undergo activation
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differentiation, tend to semantically converge (categorical homogeneity) toward
a characteristic relevant to the neuron’s categorical function. The activation
differentiation of the categorical segment identified by this synthetic critical
concept-in-act is closely linked to the categorical priming effect (effect x), as it
inherently denotes tokens with exceptionally high activation. Effect x, combined
with categorical phasing and inter-categorical attention, facilitates categorical
contouring as well as categorical convergence.

Thus, intra-neuronal conceptualization and attention, occurring at the level
of a neuron in layer n, are the fundamental synthetic processes that subsequently
enable the formation of new, more functionally effective thought categories at
layer n + 1. These emerging categories further enhance the network’s capacity to
perform the tasks for which it has been trained.

6 Conclusion
In this study, we investigated the extent to which a synthetic process of

conceptualization and intra-neuronal attention exists within the perceptron-type
neurons of language models. Specifically, we examined whether each neuron can
identify and isolate a specific categorical segment within the artificial thought
category it represents, based on its activation space. This inquiry was closely
tied to the question of whether formal neurons internally exhibit a relative
homomorphic relationship between activation segmentation and categorical
segmentation, thereby shaping the functional and epistemological significance
that can be pragmatically attributed to activation.

Our findings suggest that such a relationship does exist, albeit subtly but
systematically, and only at the level of tokens with very high activation values.
This intra-neuronal attention mechanism segments, within a given neuron in
layer n, an activation zone associated with a specific neuronal concept-in-act.
This synthetic concept-in-act serves as the basis for categorical restructuring
processes—such as categorical contouring and categorical convergence—which
can then be carried out in neurons of layer n + 1. These processes subsequently
guide the formation of higher-order categorical abstractions, constituting the
thought categories of these superordinate neurons.

It is important to emphasize, once again, that the observed phenomenon
of greater categorical homogeneity among tokens with very high activation
levels—a central finding in our study of intra-neuronal attention and conceptua-
lization—was operationalized using the input embedding system of GPT-2XL.
Additionally, the activation differentiation process we identified was determined
using GPT-4o. The advantage of this methodology is that it allows us to
study intra-neuronal attention using semantic observation frameworks that are
analogous to, or at least relatively aligned with, human thought categories. This
seems particularly relevant given that we are investigating how intra-neuronal
attention enables a language model to align with human tasks—tasks that
inherently require conceptualization and the use of thought categories that are
compatible with human cognitive structures.
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However, from another epistemological perspective, this approach may
be considered biased, self-referential, and anthropomorphic. Indeed, it could
be worthwhile to explore the relationship between activation and categorical
segmentation within a given neuron using each respective layer’s own input
embeddings as the semantic observation framework. The added value of this
alternative approach—more closely aligned with the unique and layer-specific
thought categories and alien concepts of each formal neuron—would be its greater
fidelity to the categorical structures intrinsic to each neural layer. This alternative
methodology might reveal a different phenomenology of intra-neuronal attention
and conceptualization, potentially leading to findings such as stronger categorical
homogeneity among highly activated tokens or even a broader homomorphic
relationship between activation and categorical segmentation, extending beyond
the very high activation levels highlighted in our current study.
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