Intra-neuronal attention within language models. Relationships between activation and semantics

Publié le

20 juin 2025
Par Michael Pichat, William Pogrund, Paloma Pichat, Armanouche Gasparian, Samuel Demarchi, Martin Corbet, Alois Georgeon et Michael Veillet-Guillem.

Article publié au sein de la revue en ligne Arxiv (Cornell University) le 17 mars 2025.

Abstract
This study investigates the ability of perceptron-type neurons in language models to perform intra-neuronal attention ; that is, to identify different homogeneous categorical segments within the synthetic thought category they encode, based on a segmentation of specific activation zones for the tokens to which they are particularly responsive. The objective of this work is therefore to determine to what extent formal neurons can establish a homomorphic relationship between activation-based and categorical segmentations. The results suggest the existence of such a relationship, albeit tenuous, only at the level of tokens with very high activation levels. This intra-neuronal attention subsequently enables categorical restructuring processes at the level of neurons in the following layer, thereby contributing to the progressive formation of high-level categorical abstractions.

DOI : https://doi.org/10.48550/arXiv.2503.12992

Michael Pichat est MCF en psychologie, fondateur du Cabinet Chrysippe-R&D et de Neocognition, co-directeur Diplômes « Management & Coaching » Université Paris Dauphine & Cabinet Chrysippe-R&D et membre titulaire de l’ER IPC.